
Donghui Lin
Toru Ishida
Franco Zambonelli
Itsuki Noda (Eds.)

 123

LN
AI

 1
14

22

International Workshop, MMAS 2018
Stockholm, Sweden, July 14, 2018
Revised Selected Papers

Massively
Multi-Agent Systems II

Lecture Notes in Artificial Intelligence 11422

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Donghui Lin • Toru Ishida •

Franco Zambonelli • Itsuki Noda (Eds.)

Massively
Multi-Agent Systems II
International Workshop, MMAS 2018
Stockholm, Sweden, July 14, 2018
Revised Selected Papers

123

Editors
Donghui Lin
Kyoto University
Kyoto, Japan

Toru Ishida
Kyoto University
Kyoto, Japan

Franco Zambonelli
University of Modena and Reggio Emilia
Reggio Emilia, Italy

Itsuki Noda
National Institute of Advanced Industrial
Science and Technology (AIST)
Tsukuba, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-20936-0 ISBN 978-3-030-20937-7 (eBook)
https://doi.org/10.1007/978-3-030-20937-7

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9462-0216
https://orcid.org/0000-0002-0479-4990
https://orcid.org/0000-0002-6837-8806
https://orcid.org/0000-0003-1987-5336
https://doi.org/10.1007/978-3-030-20937-7

Preface

In 2004, the First International Workshop on Massively Multi-agent Systems (MMAS
2004), was held in Kyoto, Japan. It covered several areas related to massively
multi-agent systems in the public space: massively multi-agent technology, teams and
organization, ubiquitous computing, and ambient intelligence. At that workshop, the
discussion centered on why MMAS should be the focus of attention in the era of
ubiquitous computing and networking rather than just multi-agent systems (MAS).

Today, we are witnessing the rapid growth of the Internet of Things (IoT), where
millions of physical devices with computing facilities are connected with each other in
ad hoc ways, but are required to behave coherently. Massively multi-agent systems can
be a major design paradigm or an implementation method for IoT and other large-scale
distributed systems.

The 2018 International Workshop on Massively Multi-agent Systems (MMAS
2018) was held on July 14, 2018, in Stockholm, Sweden, and was co-located with the
27th International Joint Conference on Artificial Intelligence and the 23rd European
Conference on Artificial Intelligence (IJCAI-ECAI 2018), the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018), and the
35th International Conference on Machine Learning (ICML 2018). The aim of MMAS
2018 was to provide a forum for researchers to discuss enabling technologies, new
architectures, promising applications, and challenges of massively multi-agent systems
in the era of IoT.

The MMAS 2018 workshop featured four invited speakers: Franco Zambonelli from
the University of Modena and Reggio Emilia, who explained key enabling technolo-
gies and challenges of distributed speaking objects as a case for massively multi-agent
systems; Itsuki Noda from the National Institute of Advanced Industrial Science and
Technology, Japan, who presented real applications of massively multi-agent systems
in social systems like urban traffic control and disaster response; Andrea Omicini from
the University of Bologna, who discussed the potential of logic-based approaches for
massively multi-agent systems; and Yohei Murakami from Ritsumeikan University,
who introduced a new architecture for distributed massively multi-agent systems with
example scenarios in the real world. The workshop included seven oral presentations,
which were categorized into two parts: multi-agent systems and IoT, architectures for
massively multi-agent systems.

This volume consists of ten papers: seven revised papers presented at the workshop
and three post-workshop papers. The post-workshop papers focused on applications of
massively multi-agent systems, including two invited papers: Feldman and Bucchiarone
introduced the transportation as a service (TaaS) as a massively multi-agent system able
to cover a diverse technological spectrum ranging from tightly structured hierarchies to
open markets; and Murase et al. presented a software framework called CARAVAN,
which was developed for comprehensive simulations on massive parallel computers.

We hope this book will encourage researchers in their efforts to develop new
massively multi-agent systems and applications, and to explore how massively
multi-agent systems can be used for large-scale social design with big data analysis,
high-performance computing, and other leading technologies. We are grateful to all the
Organizing Committee members, Program Committee members, workshop presenters
and participants, post-workshop authors, and those who have supported this workshop.

March 2019 Donghui Lin
Toru Ishida

Franco Zambonelli
Itsuki Noda

vi Preface

Organization

Workshop Organizers

Donghui Lin Kyoto University, Japan
Toru Ishida Kyoto University, Japan
Franco Zambonelli University of Modena and Reggio Emilia, Italy
Alexis Drogoul UMI UMMISCO 209, IRD and UPMC, France
Munindar P. Singh North Carolina State University, USA
Tomohisa Yamashita Hokkaido University, Japan
Itsuki Noda National Institute of Advanced Industrial Science

and Technology, Japan

Program Committee

Jake Beal BBN Technologies, USA
Peter Lewis Aston University, UK
Andrea Omicini University of Bologna, Italy
Patrick Taillandier INRA, Toulouse, France
Hiromitsu Hattori Ritsumeikan University, Japan
Toshiharu Sugawara Waseda University, Japan
Yohei Murakami Ritsumeikan University, Japan
Norman Sadeh Carnegie Mellon University, USA
Amit K. Chopra Lancaster University, UK
Donghui Lin Kyoto University, Japan
Toru Ishida Kyoto University, Japan
Franco Zambonelli University of Modena and Reggio Emilia, Italy
Alexis Drogoul UMI UMMISCO 209, IRD and UPMC, France
Munindar P. Singh North Carolina State University, USA
Tomohisa Yamashita Hokkaido University, Japan
Itsuki Noda National Institute of Advanced Industrial Science

and Technology, Japan

Sponsor

Grant-in-Aid for Scientific Research (A) (No. 17H00759), JSPS
Grant-in-Aid for Scientific Research (B) (No. 18H03341), JSPS

Contents

Multi-agent Systems and Internet of Things

Distributed Speaking Objects: A Case for Massive Multiagent Systems 3
Marco Lippi, Marco Mamei, Stefano Mariani, and Franco Zambonelli

Injecting (Micro)Intelligence in the IoT: Logic-Based
Approaches for (M)MAS . 21

Andrea Omicini and Roberta Calegari

Integrating Internet of Services and Internet of Things
from a Multiagent Perspective . 36

Donghui Lin, Yohei Murakami, and Toru Ishida

Architectures for Massively Multi-agent Systems

Two-Layer Architecture for Distributed Massively Multi-agent Systems 53
Yohei Murakami, Takao Nakaguchi, Donghui Lin, and Toru Ishida

Multi-agent Social Simulation for Social Service Design 66
Itsuki Noda

Inverse Reinforcement Learning for Agents Behavior
in a Crowd Simulator . 81

Nahum Alvarez and Itsuki Noda

FARM: Architecture for Distributed Agent-Based Social Simulations 96
Jim Blythe and Alexey Tregubov

Applications of Massively Multi-agent Systems

Diversity in Massively Multi-agent Systems: Concepts, Implementations,
and Normal Accidents . 111

Philip Feldman and Antonio Bucchiarone

CARAVAN: A Framework for Comprehensive Simulations
on Massive Parallel Machines. 130

Yohsuke Murase, Hiroyasu Matsushima, Itsuki Noda,
and Tomio Kamada

BASIC: Towards a Blockchained Agent-Based SImulator for Cities 144
Luana Marrocco, Eduardo Castelló Ferrer, Antonio Bucchiarone,
Arnaud Grignard, Luis Alonso, Kent Larson, and Alex ‘Sandy’ Pentland

Author Index . 163

x Contents

Multi-agent Systems and Internet of
Things

Distributed Speaking Objects: A Case
for Massive Multiagent Systems

Marco Lippi(B) , Marco Mamei , Stefano Mariani ,
and Franco Zambonelli

Dipartimento di Scienze e Metodi dell’Ingegneria,
Università di Modena e Reggio Emilia, Reggio Emilia, Italy

{marco.lippi,marco.mamei,stefano.mariani,franco.zambonelli}@unimore.it

Abstract. Smart sensors and actuators, embedding learning and rea-
soning features and associated to everyday objects and locations, will
soon densely populate our everyday environments. Being capable of
understanding, reasoning, and reporting about what is happening (for
sensors) and about what they can make possibly happen (for actua-
tors), these “speaking objects” will thus be assimilable to autonomous
situated agents. Accordingly, populations of speaking objects will define
dense and massive multiagent systems, devoted to monitor and control
our environments, let them be homes, industries or, in the large-scale,
whole cities. In this context, the necessary coordination among speak-
ing objects will be likely to become associated with the capability of
argumenting about situations and about the current state of the affairs,
triggering and directing proper distributed conversations, and eventually
collectively reach future desirable state of the affairs. In this article, we
detail the speaking objects vision, overview the key enabling technolo-
gies, and analyze the key challenges for engineering large-scale collectives
of speaking objects and their conversations.

Keywords: Massive multiagent systems · Internet of Things ·
Argumentation

1 Introduction

The Internet of Things (IoT) is enabled by the possibility of enriching physical
objects and places with wirelessly accessible sensing, computing, and actuating
capabilities [3], such that everything in our physical and social worlds will become
a node in a large-scale situated network, supporting coordinated actions to sense
and control the world itself and to facilitate interactions with it [5].

As of today, most of the approaches to engineer IoT systems still consider
IoT devices as simple providers of services, either sensing services producing
raw data or actuating services executing specific commands [3]. From the archi-
tectural viewpoint, most approaches adopt a centralized, often cloud-based per-
spective: raw sensor data is collected at some control point, there analyzed to
c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-20937-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_1&domain=pdf
http://orcid.org/0000-0002-9663-1071
http://orcid.org/0000-0003-3918-2107
http://orcid.org/0000-0001-8921-8150
http://orcid.org/0000-0002-6837-8806
https://doi.org/10.1007/978-3-030-20937-7_1

4 M. Lippi et al.

infer situations and events in the concerns of interest, and commands for the
actuators are generated to have them produce some effect on the smart objects
in the environment in which they situate. However, some recent technological
evolutions [1,9,34] let us point to a novel scenario:

– IoT devices can and are going to become much smarter [9]. On the one
hand, rather than simply producing streams of data, smart sensors can inte-
grate Artificial Intelligence (AI) tools, thus becoming capable of understand-
ing and reporting – via factual assertions and arguments – about what is
happening around. On the other hand, smart actuators will become increas-
ingly autonomous and goal-oriented, and able to decide how to act towards
the achievement of specific goals [1]. In other words, such smart objects are
becoming de facto software agents or, as we like to call them, “speaking
objects” [24].

– Multitudes of speaking objects will form the nodes of massive distributed
multiagent systems that can be exploited to monitor and control activities
in real-time in our everyday environment. Although centralized cloud-based
approaches are here to stay for the sake of global data analysis and long-term
planning, speaking objects will have to interact and coordinate with each
other in a distributed way, to ensure prompt response to local situations [34].

Clearly, the very nature of speaking objects will dramatically change the
approaches to implementing and coordinating the activities of distributed pro-
cesses. In fact, coordination is likely to become associated with the capability of
argumenting about situations and about the current “state of the affairs” [9], by
reaching a consensus on what is happening around and what is needed, and by
triggering and directing proper decentralised semantic conversations to decide
how to collectively act in order to reach future desirable state of the affairs.

In this context, the paper provides the following contributions:

– An analysis of the key concepts behind speaking objects, showing how they are
going to change the very nature of decentralized coordination and are going
to challenge traditional approaches to distributed computing and calling for
novel conversational approaches.

– An overview of the key technologies and approaches that, in such a novel sce-
nario, will have to be involved in the engineering of systems and services, and
will have to become core expertise for distributed systems engineering. Among
the others, these include knowledge representation and commonsense reason-
ing, machine learning, goal-oriented programming, argumentation models and
technologies, and human-computer interfaces.

– The identification of some research challenges that will have to be faced to
pave the way towards a novel and effective approach for the engineering of
these new classes of distributed systems. These include challenges at the level
of software engineering models, middleware technologies, user involvement,
control and understandability, security.

To ground the discussion with an exemplary case study, we will consider the case
of a large-scale deployment where a smart hospital is instrumented to support

Distributed Speaking Objects: A Case for Massive Multiagent Systems 5

health monitoring and assisted living [16]. We assume the hospital to be densely
enriched with connected sensors and actuators, at the level of basic infrastruc-
tures (e.g., lightening, heating), all its rooms (with ambient cameras, controllable
doors and windows), appliances (e.g., furniture, clocks, TV, fridge, etc.), and
medical devices (e.g., spirometers, heartbeat monitoring devices, Fitbits, etc.).
This infrastructure, possibly including wearable bio and activity sensors, can be
used to monitor the living and health conditions of patients, and to dynami-
cally control the overall configuration of the hospital to fit peculiar needs and
contingencies.

2 Speaking Objects as Cognitive Goal-Oriented Agents

Currently, in the IoT arena (and in related typical application scenarios, from
smart homes to smart cities and transportation) the concept of smart object is
mostly associated to the possibility of attaching ICT devices to physical objects
and places, thus turning them into: (i) sensors, capable of sensing a large amount
of properties related to our physical/social worlds, and producing big streams
of data to be collected at some centralized (or semi-centralized as in edge/fog
computing approaches [39]) point for later analysis; (ii) remotely controllable
actuators, capable of enacting specific configurations or actions in the surround-
ing environment, by receiving appropriate commands.

Progress across many different areas, though, indicates that smart objects
are improving fast beyond such mere sensing and actuating capabilities, to
become capable of cognitive goal-oriented behavior. That is, to become de facto
autonomous agents.

2.1 Data Collection vs. Cognitive Sensing

Advancements in machine learning techniques, and in the increase of computa-
tional power that can be embedded in everyday sensors and objects, is making it
possible for smart objects to analyze locally the stream of sensed data in order to
extract relevant features from it. A simple example, in our case study scenario, is
a set of wearable devices monitoring physiological parameters and physical activ-
ities of a patient, capable of associating the sensed patterns of movement to sit-
uations like “unusual heart rate”, “walking”, “running” (see Fig. 1), or a control
camera that detects the presence of specific objects in the recorded scene, such
as “stretcher in corridor X”. To some extent, such objects are already becoming
“speaking”, by evolving from producers of raw data streams (a capability that
they nevertheless preserve) to producers of high-level concepts.

However, we can soon expect that such capabilities will evolve in order to rec-
ognize more complex situations, making objects capable of causally connecting
individual patterns into composite situations, that is, making assertions about
what is happening around them. For instance, a set of wearables may construct
the assertion that “Heart rate increased due to a training session” from the sens-
ing of two distinct patterns. Or a camera may perform scene understanding, by

6 M. Lippi et al.

Fig. 1. From simple sensors to speaking objects. In a smart hospital scenario a num-
ber of wearable devices can interact – speak – to gather a complete description of a
situation.

relating the individual objects it recognizes, e.g., “patient Marco has left the
stretcher in corridor X”. Such complex situation recognition is a hot topic for
research in computer vision and in pervasive computing in general [38].

Further capabilities of asserting about complex situations arise from sensor
fusion techniques, where the outputs of multiple sensors – each with a specific
perspective on the surrounding world – are combined together to form a more
comprehensive understanding. For example, fusing information from a camera
and a temperature sensor in a smart room can eventually enable to assert that
“the temperature is dropping down because the window is open”.

Last but not least, the possibility for humans to enter the picture and act
themselves as speaking objects (e.g., by posting information via their mobile
phones), brings further possibilities of complex event recognition to the scenario.

In any case, our concept of speaking objects should not be interpreted solely as
the capability of interacting via natural language (which nevertheless is an impor-
tant feature in the overall framework, as we will discuss in the following) but more
generally as the capability of expressing and understanding assertions about sit-
uations, regardless of the media and language which they are delivered with.

2.2 Actuating Commands vs. Achieving Goals

Concerning actuators, our perspective is that smart actuating objects (capable
of performing some action in the environment) will become capable of “hearing”
what are the goals or situations to be achieved, and achieve them autonomously.

Again, we emphasize here that it is not a matter of having smart tools (such
as Amazon Echo or Google Home) capable of interpreting vocal commands to
activate some home appliances. In fact, whether triggered by vocal commands

Distributed Speaking Objects: A Case for Massive Multiagent Systems 7

or by traditional service invocations, current appliances are simply interpret-
ing commands and executing them. We are rather talking of moving from a
command-based mode of operation to a goal-based one. Instead of telling actu-
ators what to do, a goal-based approach relies on expressing a desirable state
of the affairs to be achieved with respect to some environmental configuration,
and let them autonomously evaluate what actions to make in order to reach it.

For instance, in the hospital scenario, a patient can simply express some
desire (e.g., “I need to sleep”) and have the light system start operating in auton-
omy, adjusting lightning accordingly. Or, a smart desk lamp that autonomously
moves and tunes intensity to ensure optimal illumination in spite of changing
environmental conditions [1].

Smart actuator objects, to achieve their goals, must acquire information
about the current state of the affairs, which requires gathering information from
smart sensors. Also, they must sometimes interact with each other and with non-
smart objects (e.g., non goal-oriented actuators). For instance, in order to achieve
specific temperature and humidity comfort levels, the A/C system might be in
need to cooperate with the heating system and should be allowed to operate the
opening/closing of the windows (assuming such windows as non goal-oriented).

The requirement of interaction brings us to the next section.

3 Distributed Coordination as a Conversation

In an environment populated by smart speaking objects (e.g., sensors) and by a
variety of smart hearing objects (e.g., actuators), the issue of coordinating their
distributed activities arises. In fact (see Fig. 2):

– Speaking objects sense and have to produce an understanding of the situations
around, for which they may be in need to exchange information (to complete
information or to disambiguate it).

– Speaking objects have to talk with hearing objects to inform them about
what is happening (the current state of the affairs and the reasons causing
them), which is necessary for hearing objects to plan actions.

– Hearing objects may have to talk to each other to agree on common courses of
actions, whenever a desired state of the affairs (either embedded in their code
or dynamically expressed at run-time) requires the cooperation of multiple
actuators, or may be achieved in multiple ways by different actuators, or
multiple conflicting views of the desired state of the affairs exist.

– All of which to form a closed loop [19], in which any action by the actua-
tors produces some changes in the environment that have to be immediately
sensed to provide feedback for the actuator themselves. Given such dynam-
ics, and the possibility of expressing new desires in real-time, centralized (e.g.,
in the cloud) approaches become unsuitable, whereas decentralized coordina-
tion between the different objects (and possibly the concerned human actors)
becomes mandatory, possibly with the support of some local hub [39].

8 M. Lippi et al.

Fig. 2. Coordination among smart speaking objects and smart hearing actuators has
to be realized as a sort of distributed multi-agent conversation. In the smart hospital
scenario a massive amount of devices and systems might need to coordinate to obtain
a coherent view of the situation.

In the following we show that, in the envisioned scenario, coordination between
speaking and hearing objects naturally assumes the form of a distributed multi-
party conversation, or dialogue [2], among autonomous agents.

3.1 From Coordination to Conversations

A conversation is a session of interaction between an ensemble of distributed
agents, with the aim of letting them reach an agreement about their beliefs
and/or plans of actions [36]. In the speaking object scenario, conversations take
place by having speaking and hearing objects exchange assertions about the
current or desirable state of the affairs, respectively. Such assertions can be
contradicted or strengthened by others engaging in the conversation with the
goal of reaching an agreement about the state of the world (for speaking objects)
or about a joint plan aimed at achieving a given state of affairs (for hearing
objects).

Conversational approaches to distributed coordination are radically different
from traditional approaches, which tend to enforce strict rules on the behavior
of components, and assume the presence of specific coordination laws to respect,
in terms of how components interact and how components should behave during
interaction. They mostly leave no room for goal-oriented behaviors and for adapt-
ing the dynamics of a distributed coordination protocol to the actual outcomes

Distributed Speaking Objects: A Case for Massive Multiagent Systems 9

of the conversation itself and to the arguments raised by components during the
coordination process.

In some sense, conversation-based coordination shifts attention to the meta-
level of coordination, by providing rules to negotiate interaction protocols rather
than the protocols themselves. Flexibility greatly benefits from this perspective,
because not only the actual interactions among participant components arise
at run-time according to a given interaction protocol, but the protocol itself
emerges from the bottom up. Furthermore, traditional coordination approaches
are mostly memoryless, as they rarely track the history of interactions for pur-
poses beyond performance tuning, computation of trust, or adaptation of poli-
cies. The envisioned conversations, instead, naturally account for interaction
history through the notion of commitment, aiming to track promises, claims,
and arguments, for the sake of correctness of the whole coordination process.

Even in the IoT arena, most approaches for orchestrating the activities of
the different components rely, as of today, on a set of rules, and on middleware
engines that check and enact them [32]. Such rules dictate how the components
should be activated (and their services executed), depending both on the situa-
tions that are happening, and on those that – in reaction – should be achieved.
However, in a scenario of speaking and hearing (goal-oriented) objects, such an
approach falls short, due to the impossibility of foreseeing and defining all possi-
ble events and state of the affairs, and all the possible ways in which components
can be activated. It is in fact unfeasible to design all the possible composition
rules that orchestrate the behaviors of the components. Thus, while the pos-
sibility of defining rules and constraints for the “do” and the “don’t” of the
systems (e.g., safety and liveness properties that should be always guaranteed
[40]) should remain, the actual way the components act and interact should be
identified at run-time by the components themselves, still in respect of global
system goals and constraints.

The issue of reaching a consensus in an ensemble of interacting autonomous
components via distributed negotiations has been deeply investigated in the
area of agent-oriented computing [17]. However, negotiation mechanisms are
blind with respect to the strategy adopted by the agents participating in the
negotiation. This does not help in reaching globally satisfactory solutions, which
could be achieved instead by letting agents conversate and motivate their choices,
as proposed in argumentation-based multi-agent negotiation [30], a research area
that has very strong relations with our vision (see Sect. 4.4).

3.2 Types of Conversations

Let us now classify the different types of conversation that one can expect to
take place in the speaking objects scenario.

Among Speaking Objects. Speaking objects are likely to interact with each other
in order to build and report a complete and coherent understanding of their
surroundings. However, it may be the case that the identification of a specific
situation requires (i) more information than initially thought, or (ii) solving
some conflicting perceptions.

10 M. Lippi et al.

The former case triggers what are called information seeking and inquiry
dialogues [36]. These are aimed at integrating the originally incomplete informa-
tion with either new information or more arguments in support of the existing
one. For example, in the smart hospital scenario, a set of speaking cameras need
to ask each other who they are detecting to collectively build a global map of
patients’ locations in real-time.

In the latter case, different (sets of) speaking objects may reach different
conclusions about what is happening, which triggers negotiation and persuasion
dialogues to let them all agree on a common perspective. To this end, speaking
objects may exchange arguments explaining the reasons why they ended up
identifying a specific situation to persuade others, or they may decide to involve
additional sensors in the conversation. In the smart hospital scenario, the variety
of speaking objects may not necessarily acquire the same perspective on what is
sensed. A camera in the rehabilitation room of the hospital may recognize that
a man is “running on the treadmill”, the treadmill itself may state that the user
is “standing”, whereas the wristband may recognize that he is “jumping”. To
solve the conflict, they may start comparing with each other the reasons behind
their respective understandings of the situation. This can enable discovering that,
since the treadmill is off (and this is why it stated that the user was “standing”),
the only reasonable explanation is that “the user is jumping on the treadmill”.

We emphasize that, although a variety of sensor fusion techniques exist to
support situation identification [22], these typically act downstream the sensor
level, as they simply receive data from sensors and try to apply well-defined rules
to both integrate distinct data streams and solve possible conflicts. Basically,
they are mostly black-boxes from an observer standpoint. Moreover, they do
not usually consider giving sensors the possibility of taking action themselves.
Yet, in our view speaking sensor objects become sort of grey-boxes: they can be
requested to justify their perceptions and explain their course of action, and are
expected to provide insights into the reasoning that guides their behavior. The
same holds for hearing actuator objects, as described in the following.

Between Speaking and Hearing Objects. While planning for a specific course
of action aimed at achieving a given state of the affairs, hearing objects may
recognize that they need more information and/or more convincing arguments
than initially provided in order to make an informed decision.

This kind of conversation is a mixture of information seeking, inquiry, and
deliberation dialogues [36], which should be suitably composed so as to enable
informed decision making: in this way, hearing actuators are able to plan and
justify their course of actions based on the amount and quality of information
required by the scenario at hand. Notice that this kind of closed feedback loop
between sensing and acting is very expensive with state of the art cloud-based
approach to IoT.

Among Hearing Objects. In the majority of real world applications, such as in
the assisted living scenario already described, it is quite unusual that actuators
are able to individually change their environment (namely, act) so as to achieve
the optimal state of affairs. Rather, it is usually through collaboration and joint

Distributed Speaking Objects: A Case for Massive Multiagent Systems 11

planning efforts that the most effective and efficient strategy to achieve a given
goal can be designed and pursued. Accordingly, it is often the case that hear-
ing objects engage in deliberation dialogues meant to achieve a shared plan by
exchanging arguments about feasibility of actions, their expected utility, likeli-
hood of positive/negative outcomes, and the like. Then, it is similarly unrealistic
to assume that the landscape of all the possible actions by all the participant
actuators is conflict-free [43]. Thus, negotiation and persuasion dialogues are
required as a means to argue toward conflicts resolution.

As an example, consider an A/C system in a room of the hospital willing to
turn itself on after hearing the thermostat assert “it’s hot”. In case a few hearing
windows are also installed, both the A/C and the windows may decide to act,
without actually generating any conflict: either turning on the A/C or opening
the windows (or doing both) leads to the goal anyway. Nevertheless, doing both
is sub-optimal from the standpoint of efficiency, thus joint deliberation to col-
lectively choose an individual course of action or a shared plan – in this case,
who acts and who doesn’t – is likely welcome. Accordingly, the window may con-
vince the A/C not to act by argumenting “there is a fresh breeze outside, I can
save power consumption while still chilling the room”. Now consider the same
scenario during the summer: if both actuators act there is a conflict, because
the air coming from the outside would likely be hot, actually neglecting the air
conditioning effect—or, at the very least, hindering the A/C system course of
actions and leading to sub-optimal efficiency and effectiveness. Yet again, thus,
joint deliberation for shared planning is required.

4 Enabling Technologies

Let us now present the main technologies and approaches which enable our
vision. Although these have been widely investigated in the context of agents
and multiagent systems, they are not (yet) properly accounted for by research
in the IoT area.

4.1 Cognitive Reasoning

First of all, given their conversational nature, speaking and hearing objects need
to implement some form of cognitive reasoning, and especially of knowledge repre-
sentation and commonsense reasoning. By continuously interacting among them
and with humans through dialogue, they will have to share a common represen-
tation of the world.

A clear need is that of exploiting knowledge bases and large-scale ontolo-
gies to model and represent the concepts and their relations, which the agents
continuously deal with. This issue represents a significant challenge in agent coor-
dination [10] and it remains under-explored in the IoT domain [14]. Although
the general problem is far from being solved, yet some recent works have pro-
posed architectures that address the aforementioned issues. For example, in [11]

12 M. Lippi et al.

a framework is proposed, that builds lower- and higher-level abstractions, start-
ing from raw data. A recent survey [29] presents several approaches to context-
aware computing in the IoT domain, with a specific emphasis on their capability
to embed background knowledge and context-awareness. Such thorough analysis
shows how rule-based mechanisms are still largely employed to perform symbolic
reasoning, thanks to the hand-crafted knowledge bases designed by experts. An
analysis of the scalability of this kind of technologies towards massive systems
has been recently presented [25], together with an experimental evaluation of
the most promising semantic reasoning approaches in the IoT arena.

Commonsense reasoning also has to be integrated into the scenario of speak-
ing and hearing objects. This keyword describes a research area where the aim
is to make computers capable of performing those basic inference processes that
we, as humans, continuously perform without even thinking [8]. This skill is
crucial in our everyday life, and allows us to take decisions and solve problems.
Smart devices that will be more and more integrated in our life, such as speaking
and hearing objects, will necessarily embed this ability in order to autonomously
and proactively operate. Currently, existing approaches are limited to restricted
domains and, therefore, to restricted reasoning capabilities (typically, taxonomic
reasoning) [8]. We argue that large-scale scenarios will provide novel data collec-
tions upon which it will be possible to test new techniques, for example coming
from machine learning.

4.2 Machine Learning

Massively distributed sensors in the IoT arena clearly produce huge data streams,
that need manipulation, aggregation, and sometimes also more sophisticated,
intelligent elaboration. These steps are nowadays often performed directly on-
board, within smart sensors, that can embed tools such as deep networks [20].
Turning the processed information into high-level knowledge is, however, still an
open issue [29].

Another peculiar trait of speaking and hearing objects is the capability of
learning behaviors, strategies, and policies from historical data and situations,
with the aim of continuously adapting to the environment. This would repre-
sent a major advantage with respect to approaches based on sets of pre-defined,
hand-crafted rules, that are clearly hard to update in case of abrupt system
changes. Similarly, pattern mining methodologies could be exploited to perform
association rule mining and user profiling [35]. Here, we believe that Statistical
Relational Learning [13] and Neural-Symbolic learning [12] could offer a valuable
research direction to pursue, as they propose to combine logic-based approaches
with statistical learning, probabilistic models, and neural approaches (including
deep learning), with the goal of both handling uncertainty in data, and exploiting
background knowledge. The idea is that grey-box models, capable of exploiting
both the computational power of systems such as deep networks, and the inter-
pretability of logic and argumentation, will offer tools to support medium and
long-term self-adaptation of pervasive computing systems. In this way, speak-

Distributed Speaking Objects: A Case for Massive Multiagent Systems 13

ing objects will move a step towards explainable artificial intelligence, which is
considered one of the major challenges for the near future.

4.3 Goal-Oriented Computing

Making actuators become goal-oriented requires to ascribe them a few crucial
capabilities: (i) recognize expression of a goal, as a state of affairs to be achieved;
(ii) deliberate whether they may play a role in pursuing that goal, and how; (iii)
reason about feasibility, likelihood of success, and outcomes of the actions needed
to get there [37]; (iv) plan the course of actions to undertake, considering cost,
expected utility, etc. [27]. All of this in autonomy, that is, with the opportunity
to reject goals if they are not of interest, abandon them if they are no longer
feasible, offer help to others if such an opportunity arises, and ask help to others
if no other means to achieve the goal is currently available.

It is worth noting that goal-oriented behaviour may be ascribed to speak-
ing objects as well. In the current IoT vision, sensors are simply hard-coded to
monitor a given property of a given environment, to generate data and events
accordingly. In the speaking objects vision, instead, sensors may bind moni-
toring activities to an explicit and dynamic goal, either expressed by another
component or by a human user.

It is then necessary to embed at the very foundation of the speaking objects
vision all the concepts, abstractions, and models commonly found in the agent-
oriented literature, such as the notion of cognitive agents [31], techniques for
means-ends reasoning [37] and planning [27], the many issues of coordination
in multi-agent systems [28]. Many languages and infrastructures have proven
to be mature enough for relevant scenarios in the agent-based community: for a
survey, the interested reader is referred to [4]. Yet, their viability and effectiveness
in a highly dynamic, heterogeneous, resource-constrained, and scale-demanding
domain such as IoT, still remains to be fully assessed.

4.4 Argumentation-Based Coordination

Argumentation is required as a necessary feature of sensor and actuator devices
to regard them as speaking and hearing objects. Argumentation may in fact well
support: (i) decentralised coordination, by leveraging negotiation opportunities;
(ii) situated reasoning, by enabling belief revision in face of uncertainty; (iii)
joint deliberation, by allowing negotiation over desires and plans besides beliefs;
(iv) “humans-in-the-loop”, by making explanations and justifications of decision
making available in natural language. For a more thorough analysis of these
aspects, the reader may refer to [23].

Despite the long history of research in argumentation, only recently practical
applications to real-world scenarios have started receiving attention (e.g., see
[18]). Furthermore, for argumentation to work there must be either an agree-
ment among participants about the admissible moves and their significance, or
an external judge enacting some form of control over the argumentation process.
Neither of the two is straightforward to have in the speaking objects vision:

14 M. Lippi et al.

reaching agreement is difficult per se, besides being unlikely easily scalable; and
having an external authority may be an unacceptable centralisation point. A
way out can be found by carefully investigating hybrid approaches where, for
instance, a multitude of external authorities share the load of arbitrating argu-
mentations among a limited number of participants, possibly exploiting some
notion of physical or logical proximity to enforce shared argumentation rules.
Another solution could be to have participants agree only temporarily, for the
duration of a given “conversation session” on a common set of argumentation
rules, which may then change for future conversations depending on, e.g., timing
constraints or the type of dialogue.

5 Integration Recipe: Open Challenges for Realizing
the Vision

Although we identified some technologies that will most likely become key ingre-
dients in the speaking objects vision, actually realizing the vision implies having
the appropriate modelling tools and middleware infrastructures to coherently
integrate them, and to ensure they will be employed to produce practical, usable,
and dependable systems.

5.1 Massive Scale and Heterogeneity

The key challenge in developing and controlling systems of distributed speaking
objects is their massive overall scale. It is foreseen that in the near future billions
of IoT devices will populate our cities, including thousands of our buildings and
homes. Such myriads of devices will be in need to be coordinated at different
scales, from the global ones (e.g., for achieving policies at urban level) to the
local ones (i.e., for realizing functionalities and achieving policies at building or
home level).

The computational power of these smart devices is growing faster and faster,
allowing to embed very advanced technologies in relatively cheap hardware. This
will be a key factor for a massive distribution of intelligent, autonomus agents.
In fact, this enables efficient separation of concerns, that is distributing func-
tionalities and responsibilities, among the different scales of the system, so as
to better tackle the most pressing issues at the right level of abstraction: for
instance, critical functionalities requiring rapid decision making and adaptation
for quickly solving local contingencies can be attributed to the smaller scale of
the multi-scale system at hand (such as an hospital), up to the individual device,
whereas medium and long term planning and scheduling of strategic actions can
be charged upon the higher scales of the system (i.e., a department-wide in-
house server scheduling appointments, or a hospital-wide cloud-based platform
planning resource exploitation).

Accordingly, on the one hand it will be needed to design and deploy coor-
dination schemes that can support coordination among a very large number of
distributed components, to realize global policies. However, these can hardly rely

Distributed Speaking Objects: A Case for Massive Multiagent Systems 15

on conversations and argumentation-based approaches, whose scalability remains
an open issue. Rather, they should get inspiration from social and nature-inspired
coordination models [42]. On the other hand, the above forms of large-scale coor-
dination should co-exist with more local, argumentation-based, forms of coordi-
nation to achieve local goals. How the two forms of coordination could co-exist
is definitely an open and fascinating research challenge.

In the case of the hospital deployment already mentioned, for instance, the
system may be conceptually – and technically, actually, as explained in the
following – split in a few layers, corresponding to the different scales at which it
is conveniently modelled and designed; let us assume three as depicted in Fig. 3:

– the smaller scale is mostly concerned with local-only, critical, highly dynamic
situations recognition and decision making (i.e. a single room where a patient
may unexpectedly need the emergency unit)

– the medium scale is possibly the most difficult to define, since it is essen-
tially meant to transition from the local perspective of the smaller one to
the global-perspective of the larger one. Here, the most critical task is that
of defining how information coming from the lower layer (the smaller scale)
can be aggregated and presented to the upper layer (the larger scale), and
how decision making executed on the higher layer should be translated in
actionable commands for the lower one. For instance, coordination amongst
doctors and nurses in the same department based on scheduled appointments
and emergency events is likely to happen here

– the larger scale deals with global planning and monitoring, where collection
of relevant aggregated information and synthesis of consequential activities
happen on a medium to long-term horizon, and responsiveness is usually far
less important than accuracy and completeness (of both information collec-
tion and decision making). This scale may range from an individual hospital
building up to the whole hospital organisation as displaced in different geo-
graphical areas—but belonging to the same administration.

5.2 Middleware

Under a more pragmatic perspective, a crucial technical question is to under-
stand the role of middleware in supporting the new means of coordinating dis-
tributed components, represented by conversations. In fact, although conversa-
tion essentially amounts to message-passing interaction, a mere message-oriented
middleware (MOM) would fail addressing its peculiarities [6]. Conversations
imply a shared knowledge among interacting components, which cooperatively
build upon it a common interpretation of the world based on logically sound
and related arguments, and cooperatively conceive and commit to a joint plan
of actions. MOM is also weak in supporting interaction in a dynamic (i.e. open
and mobile) world, where the identities and locations of components are not
known in advance, as in the case of speaking objects (and of IoT in general).

Accordingly, the middleware should lean towards a different coordination
model, capable of going beyond the rather primitive functionality of MOMs

16 M. Lippi et al.

in terms of direct interactions between components. Rather, it should support
conversations at an higher level of abstraction, i.e. via an open and shared con-
versation space enabling conversation among components that do not necessarily
have to know each other in advance: for instance, a tuple space. However, unlike
traditional tuple space models, which contain unrelated pieces of data, the need
to access data and metadata about conversations implies connecting information
into sorts of knowledge networks, detailing how conversations evolved and how
they are related. Although some proposals in that direction exist [26], the best
way to realize such shared conversation space is still subject of active research.
As it is yet to be evaluated how corpora of commonsense knowledge could be
integrated within the overall architecture to support conversations.

hospital
room

hospital
department

hospital building

hospital (whole organisation)

hospital building

hospital
department

hospital
room

hospital
room

hospital
department

hospital
department

hospital
room

monitoring devices
wearables

drug dispensers

pharmacy management

work shifts scheduling
medical devices maintainance

strategic planning
audits & quality assurance

Fig. 3. Different scales of information collection, decision making, and coordination as
seen in a large-scale Speaking Objects deployment. Smaller scales are associated with
critical, highly dynamic situations, in which argumentation-based coordination may
be employed to guarantee soundness and accountability of solutions, whereas larger
scales with longer planning and monitoring, and slower but steady adaptation given
by self-organising coordination may come handy to manage complexities.

5.3 Humans-in-the-Loop

The speaking objects vision cannot overlook humans-in-the-loop as a vital com-
putational component of the scenario. In fact, besides participating as actors
that impose their desired states of the affairs to the system (see Fig. 2), humans
can become actual components of the system itself: they can participate by

Distributed Speaking Objects: A Case for Massive Multiagent Systems 17

providing sensing capabilities (thus acting as speaking objects), actuating capa-
bilities (as hearing objects), and can consequently be involved in conversations.
This convergence between human and software entities is witnessed by many
modern socio-technical systems, and it demands researchers and practitioners to
conceive, design, and develop systems seamlessly interacting with other software
systems and with human agents as well.

It is worth noting that when human users enter the picture, the need for
argumentation-based conversations is even more evident: the ability of smart
objects to justify their stances, in fact, becomes crucial to convince users to
effectively participate in the conversational process. Clearly, this may require
accounting for socio-cognitive models of action and interaction as they can
be observed among human agents, to be suitably transferred to the synthetic
domain of conversating speaking objects.

In this perspective, more natural interfaces, such as voice commands or ges-
tures, and techniques coming from natural language processing, speech recogni-
tion, and computer vision will become essential components of smart objects, as
they already are in our smartphones. In this way, less effort will be required to
program devices, and users will experience a more direct and transparent interac-
tion with technology [21]. While the current state of the art is about interacting
with a single device or hub (e.g., Amazon’ Echo and Google Home), in the near
future we envision interacting with many at the same time. For example, a voice
command will be heard by multiple devices, and each will have to interpret it,
as well as to understand its role in the overall fulfillment.

Besides the need for effective means of human-machine interaction, as already
discussed in Sect. 4, integrating humans in the loop also challenges the whole
software engineering process, the modeling and design of human behaviours and
of conversations involving humans, and the functionalities that the middleware
should provide to enable integration.

5.4 Harnessing Algocracy

Nowadays, the world in which we are living is becoming more and more dom-
inated by algorithms, that by now are daily exploited in a variety of decision-
making processes. This novel scenario is typically referred to as an algocracy [7].
In such a framework, it is often the case that we act as passive subjects in
situations that have been automatically planned and arranged for us by algo-
rithms. This could become a crucial issue in the forthcoming years, when these
systems will become a reality also on a large scale, for example in the context of
smart cities, where the safety and well-being of citizens will largely depend on
technology [41].

The scenario of speaking objects moves a step towards an open and inter-
pretable network of smart devices, with which humans can naturally interact
and converse, eventually understanding the choices and decisions of these agents,
through argumentation and dialogue. These innovative elements provide a means
through which it could be possible to control algocracy, by creating “grey-boxes”

18 M. Lippi et al.

whose behavior will be intelligible by an external observer that needs to inspect
their way of acting.

5.5 Security

Distributed scenarios for IoT have been extensively studied in terms of secu-
rity. Many challenges arise in a massive-scale scenario, including authentication,
privacy preservation, data integrity, fault tolerance, trust, and governance [33].
The inherent nature of speaking and hearing objects is grounded on conversa-
tion. On the one hand, this makes the framework vulnerable to possible system
intrusions and attacks, but at the same time it can represent a major advan-
tage against malicious behavior, thanks to interpretable explanations given by
speaking objects via argumentation. The research in the field of argumentation-
based risk assessment [15] could be turned into automated argumentation-based
security. At the same time, the correctness, validity, and strength of the posed
arguments could be exploited to assess the reputation of speaking objects, and
thus to enforce the concept of trust in the IoT setting.

6 Conclusions

The emergence of speaking objects will dramatically change the approaches to
implementing and coordinating the activities of distributed IoT processes and
services, calling for bringing in the lessons of massive multiagent systems. Within
this new scenario, scalability will soon become a urgent need, which will require
the integration of a number of technologies from different research areas. On the
one hand, speaking objects will have to implement coordination through learn-
ing, reasoning, and especially argumentation, in order to show a behavior easily
interpretable also for humans. On the other hand, such a large-scale scenario
represents an ideal testbed for novel technologies in the field of distributed and
pervasive computing, which will face challenges in the area of software engineer-
ing, security, and human-computer interaction.

Acknowledgments. Work supported by the CONNECARE (Personalised Connected
Care for Complex Chronic Patients) project (EU H2020-RIA, Contract No. 689802).

References

1. Agrawal, H., Leigh, S.-W., Maes, P.: L’evolved: autonomous and ubiquitous util-
ities as smart agents. In: ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pp. 487–491. ACM, New York (2015)

2. Amgoud, L., Parsons, S.: Agent dialogues with conflicting preferences. In: Meyer,
J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 190–205.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45448-9 14

3. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

https://doi.org/10.1007/3-540-45448-9_14

Distributed Speaking Objects: A Case for Massive Multiagent Systems 19

4. Bordini, R., et al.: A survey of programming languages and platforms for multi-
agent systems. Informatica (Ljubljana) 30(1), 33–44 (2006). Cited by 152

5. Conti, M., et al.: Looking ahead in pervasive computing: challenges and opportu-
nities in the era of cyber-physical convergence. Pervasive Mob. Comput. 8(1), 2–21
(2012)

6. Curry, E.: Message-oriented middleware. In: Middleware for Communications, pp.
1–28 (2004)

7. Danaher, J.: The threat of algocracy: reality, resistance and accommodation. Phi-
los. Technol. 29(3), 245–268 (2016)

8. Davis, E., Marcus, G.: Commonsense reasoning and commonsense knowledge in
artificial intelligence. Commun. ACM 58(9), 92–103 (2015)

9. Endler, M., Briot, J.-P., Silva e Silva, F., De Almeida, V.P., Haeusler, E.H.: An
approach for real-time stream reasoning for the internet of things. In: Proceedings
of the 11th IEEE International Conference on Semantic Computing (ICSC 2017),
pp. 348–353. IEEE, San Diego, January 2017

10. Freitas, A., Bordini, R.H., Meneguzzi, F., Vieira, R.: Towards integrating ontologies
in multi-agent programming platforms. In: 2015 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol.
3, pp. 225–226. IEEE (2015)

11. Ganz, F., Puschmann, D., Barnaghi, P., Carrez, F.: A practical evaluation of infor-
mation processing and abstraction techniques for the internet of things. IEEE
Internet Things J. 2(4), 340–354 (2015)

12. Garcez, A.S.D., Broda, K.B., Gabbay, D.M.: Neural-Symbolic Learning Systems:
Foundations and Applications. Springer Science & Business Media, London (2012)

13. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press, Cambridge (2007)

14. Gyrard, A., Serrano, M., Atemezing, G.A.: Semantic web methodologies, best prac-
tices and ontology engineering applied to internet of things. In: 2015 IEEE 2nd
World Forum on Internet of Things (WF-IoT), pp. 412–417. IEEE (2015)

15. Ingolfo, S., Siena, A., Mylopoulos, J., Susi, A., Perini, A.: Arguing regulatory
compliance of software requirements. Data Knowl. Eng. 87, 279–296 (2013)

16. Islam, S.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.-S.: The internet of
things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015)

17. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra,
C.: Automated negotiation: prospects, methods and challenges. Group Decis.
Negot. 10(2), 199–215 (2001)

18. Jung, H., Tambe, M., Kulkarni, S.: Argumentation as distributed constraint sat-
isfaction: applications and results. In: Proceedings of the Fifth International Con-
ference on Autonomous Agents, AGENTS 2001, pp. 324–331. ACM, New York
(2001)

19. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput.
36(1), 41–50 (2003)

20. Kortuem, G., Kawsar, F., Sundramoorthy, V., Fitton, D.: Smart objects as building
blocks for the internet of things. IEEE Internet Comput. 14(1), 44–51 (2010)

21. Kranz, M., Holleis, P., Schmidt, A.: Embedded interaction: interacting with the
internet of things. IEEE Internet Comput. 14(2), 46–53 (2010)

22. Liggins II, M., Hall, D., Llinas, J.: Handbook of Multisensor Data Fusion: Theory
and Practice. CRC Press, Boca Raton (2017)

23. Lippi, M., Mamei, M., Mariani, S., Zambonelli, F.: An argumentation-based per-
spective over the social IoT. IEEE Internet Things J., 1 (2017)

20 M. Lippi et al.

24. Lippi, M., Mamei, M., Mariani, S., Zambonelli, F.: Coordinating distributed speak-
ing objects. In: 37th IEEE International Conference on Distributed Computing
Systems, ICDCS 2017, Atlanta, USA, 5–8 June 2017

25. Maarala, A.I., Su, X., Riekki, J.: Semantic reasoning for context-aware internet of
things applications. IEEE Internet Things J. 4(2), 461–473 (2017)

26. Mariani, S.: Coordination of Complex Sociotechnical Systems - Self-organisation of
Knowledge in MoK. Artificial Intelligence: Foundations, Theory, and Algorithms.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47109-9

27. Meneguzzi, F.R., Zorzo, A.F., da Costa Móra, M.: Propositional planning in BDI
agents. In: Proceedings of the 2004 ACM Symposium on Applied Computing, SAC
2004, pp. 58–63. ACM, New York (2004)

28. Omicini, A., Viroli, M.: Coordination models and languages: from parallel com-
puting to self-organisation. Knowl. Eng. Rev. 26(1), 53–59 (2011)

29. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware com-
puting for the internet of things: a survey. Commun. Surv. Tutorials 16(1), 414–454
(2014)

30. Rahwan, I., Ramchurn, S.D., Jennings, N.R., Mcburney, P., Parsons, S., Sonenberg,
L.: Argumentation-based negotiation. Knowl. Eng. Rev. 18(4), 343–375 (2003)

31. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Lesser, V.R.,
Gasser, L. (eds.) 1st International Conference on Multi Agent Systems (ICMAS
1995), pp. 312–319. The MIT Press, San Francisco, 12–14 June 1995

32. Razzaque, M.A., Milojevic-Jevric, M., Palade, A., Clarke, S.: Middleware for inter-
net of things: a survey. IEEE Internet Things J. 3(1), 70–95 (2016)

33. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and
privacy in distributed internet of things. Comput. Netw. 57(10), 2266–2279 (2013)

34. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81
(2016)

35. Tsai, C.-W., Lai, C.-F., Chiang, M.-C., Yang, L.T., et al.: Data mining for internet
of things: a survey. IEEE Commun. Surv. Tutorials 16(1), 77–97 (2014)

36. Walton, D., Krabbe, E.: Commitment in Dialogue: Basic Concept of Interpersonal
Reasoning. State University of New York Press, Albany (1995)

37. Wooldridge, M.J.: Reasoning About Rational Agents. MIT press, Cambridge
(2000)

38. Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive
computing: a review. Pervasive Mob. Comput. 8(1), 36–66 (2012)

39. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues.
In: Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata 2015, pp.
37–42. ACM, New York (2015)

40. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
the Gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

41. Zambonelli, F., Salim, F., Loke, S.W., De Meuter, W., Kanhere, S.: Algorithmic
governance in smart cities: the conundrum and the potential of pervasive comput-
ing solutions. IEEE Technol. Soc. Mag. 37(2), 80–87 (2018)

42. Zambonelli, F., et al.: Developing pervasive multi-agent systems with nature-
inspired coordination. Pervasive Mob. Comput. 17(Part B), 236–252 (2015)

43. Zatelli, M.R., Hübner, J.F., Ricci, A., Bordini, R.H.: Conflicting goals in agent-
oriented programming. In: Proceedings of the 6th International Workshop on Pro-
gramming Based on Actors, Agents, and Decentralized Control, AGERE, pp. 21–30
(2016)

https://doi.org/10.1007/978-3-319-47109-9

Injecting (Micro)Intelligence in the IoT:
Logic-Based Approaches for (M)MAS

Andrea Omicini(B) and Roberta Calegari

Dipartimento di Informatica — Scienza e Ingegneria (DISI),
Alma Mater Studiorum–Università di Bologna, Bologna, Italy

{andrea.omicini,roberta.calegari}@unibo.it

Abstract. Pervasiveness of ICT resources along with the promise of
ubiquitous intelligence is pushing hard both our demand and our fears
of AI: demand mandates for the ability to inject (micro) intelligence ubiq-
uitously, fears compel the behaviour of intelligent systems to be observ-
able, explainable, and accountable. Whereas the first wave of the new
“AI Era” was mostly heralded by sub-symbolic approaches, features like
explainability are better provided by symbolic techniques. In this paper
we focus on logic-based approaches, and discuss their potential in per-
vasive scenarios like the IoT and open (M)MAS along with our latest
results in the field.

Keywords: Pervasive system · MMAS · Micro-intelligence ·
Logic-based · LPaaS

1 Introduction

Human environment is more and more affected and even shaped by the increas-
ing availability of ICT resources, in particular within the constantly-growing
urban areas all over the world. The ubiquitous availability of personal devices,
along with the increasing diffusion of sensor networks, actuator devices, and
computational resources in general, is rapidly transforming urban environments
into wannabe-smart environments on a massively-large scale.

Whereas model, technology, and methodology aspects are nowadays the sub-
ject of many research activities [47,48], the issue of (ubiquitous) intelligence is the
key to make environment really smart. Many novel approaches to machine intel-
ligence nowadays are increasingly focussing on sub-symbolic approaches – such
as deep learning with neural neural networks, e.g., [42] – and how to make them
work on the large scale. As promising as that may look – on the premise that
those approaches have the potential minimise the engineering efforts towards
large-scale intelligence – what we do also need is that our large-scale intelligent
systems exhibit socio-technical features such as observability, explanability, and
accountability to make ubiquitous intelligence actually work in human organisa-
tions and societies.

c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 21–35, 2019.
https://doi.org/10.1007/978-3-030-20937-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_2&domain=pdf
http://orcid.org/0000-0002-6655-3869
http://orcid.org/0000-0003-3794-2942
https://doi.org/10.1007/978-3-030-20937-7_2

22 A. Omicini and R. Calegari

To this end, more classic AI approaches to intelligence can be of help—such
as agents and multi-agent systems (MAS), as well as declarative and logic-based
approaches. Agents are the most viable abstraction to encapsulate fundamental
features such as control, goals, mobility, intelligence [48]. In particular, agents are
widely recognised as the main abstractions to distribute intelligence in complex
systems of any sort—e.g., [18]. Also, MAS abstractions such as society and envi-
ronment [30] are essential to cope with the complexity of nowadays application
scenarios—as well as to inject intelligence in complex computational systems
[34].

On the other hand, declarative and logic-based technologies quite straightfor-
wardly address issues such as observability and explainability, in particular when
exploiting their inferential capabilities—e.g., [22]. Since logic-based approaches
already have a well-understood role in building intelligent agents [40], we focus
instead on the role that logic-based models and technologies can play when used
to rule agent societies as well as to engineer agent environment.

In this paper we recap some of our research results about the role of logic-
based models and technologies in MAS, discussing how they can be exploited
to inject micro-intelligence [2] in large-scale scenarios. In particular, we show
how Logic Programming as a Service (LPaaS [7]) can be used to distribute intel-
ligence in KIE (knowledge-intensive environments), how Labelled Variables in
Logic Programming (LVLP [4]) can help introducing domain-specific intelligence,
and how the logic-based coordination language ReSpecT [32] can provide for
social intelligence in MAS. Also, we show how logic-based approaches makes
it possible to address in principle issues such as observability, formalisability,
explainability, and accountability.

2 Background and Related Work

2.1 (M)MAS, IoT and Intelligence

Agent-oriented engineering and (massive) multi-agent systems – (M)MAS – have
been already recognised as the most promising way for developing applications
for the Internet of Things (IoT) as well as cyber-physical systems (CPS), since
they are well-suited for supporting decentralised, loosely-coupled and highly
dynamic, heterogeneous and open systems, in which components should be able
to cooperate opportunistically [41]. Along that line, IoT and pervasive systems
can be seen as (M)MAS, devoted to monitor and control our environments where
the MAS abstractions, techniques, and methods are essential to cope with the
complexity of the application scenarios. Several works (e.g., [24,28,43]) propose
agents as the most natural way of approaching IoT systems featuring complexity,
dynamism, situatedness, and autonomy. Moreover, agents are shown to be the
most viable abstractions to encapsulate fundamental features such as control,
goals, mobility and intelligence, in the development of proactive, cooperating,
and context-aware smart objects [18].

Logic-Based Approaches for (M)MAS 23

In the following we focus our attention on the intelligence issue, a hot topic
in current IoT research, following the idea that devices in IoT pervasive sys-
tems have to be massively networked and provided with (different degrees of)
intelligence, in order to interoperate and cooperate to achieve different goals.
To this end, agent-oriented models and technologies are gaining momentum for
embedding decentralised intelligence—as discussed in [23].

2.2 Engineering Intelligence in the IoT: Key Challenges

The IoT extends the current Internet technology by connecting different types
of things (objects, devices) with each other, and enable them to communicate
smartly [46]. Consequently, the IoT concept is designed to connect millions of
things together, yet things such a huge number need large storage spaces and
generate heavy traffic, which potentially creates many network issues. Further-
more, while the things are connected with each other, they are not necessarily
able to communicate meaningfully and interoperate effectively with each other
[44]. Their ability to communicate with each other depends on the similarity of
the service they are assigned to do [25]. Such deficiencies are due to the fact that
simple computing things lack of the ability to reason on their environments and
to subsequently make intelligent decisions and actions in order to achieve their
objectives. Typically, the objects used in the IoT – e.g., RFID, sensors, televi-
sions, washing machines, etc. – lacks intelligence due to hardware and software
limitations.

In addition, the issues of security, governance and standardisation have to be
taken in consideration [44]. No consolidated set of software engineering best prac-
tices has emerged so far in the IoT world [26,47] in order to face that issue: so,
properly engineering such a new generation of scalable, highly-reactive, (often)
resource-constrained software systems is still a challenge from the SE viewpoint.

Furthermore, sociotechnical features such as observability, explainability, and
accountability have to be addressed whenever the complexity of automated rea-
soning goes far beyond the human ability to understand—and we are already
there, basically. Understanding at some level how huge aggregates of intelligent
devices and agents evolve and affect our social and organisation processes is to
become essential for technical, social, normative, and ethical reasons. Appar-
ently, there is where symbolic approaches like logic-based ones are going to be
of help.

Along that line, in the following we focus on the practice of engineering
and design intelligence in distributed systems, in particular in the IoT systems,
by discussing our latest results in the field based on logic-based models and
technologies.

3 Logic-Based Approaches for (M)MAS and IoT

In order to face the challenges and the open issues highlighted in Subsect. 2.2 we
proposed a logic-based approach for injecting micro-intelligence in large-scale
MAS, such as IoT pervasive systems.

24 A. Omicini and R. Calegari

Logic-based languages and technologies represent in principle a natural candi-
date for injecting intelligence within computational systems [1]: yet, many issues
have to be addressed—among these, the computational costs, the machinery
often not suited for programming in the large (the intrinsic modularity provided
by predicates does not scale up effectively, and modules are not enough for the
purpose), the “no-types” approach that makes it difficult to deal with domain-
specific applications, the distance from mainstream programming paradigms, the
integration with mainstream technologies. Moreover, MMAS and IoT inherently
call for a fully distributed architecture, which is why the relationship between
logic and physical distribution needs to be addressed and investigated in depth.
Classical logic approaches apparently do not cope well with the current percep-
tion of distributed systems—for instance, the universal notion of consistency of
the logic theory does not fit the incompleteness and inconsistency intrinsically
implied by distributed scenarios.

Anyway, overall, we believe that a logic-based approach can bring some
remarkable benefits in pervasive system, in particular dealing with the AI fears,
by promoting observability, malleability, understandability, formalisability, and
norm compliance—yet, a basic re-interpretation of some basic concepts of logic
programming is clearly needed in order to cope well with the aforementioned
issues.

Along with the re-interpretation of classical logic approach under the IoT
vision, we define the concept of micro-intelligence [2]: small chunks of machine
intelligence, spread all over the system, capable to enable the individual intelli-
gence of any sort of devices, promoting coordination and interoperation among
different entities. The micro-intelligence vision promotes the ubiquitous distri-
bution of intelligence in large pervasive systems such as IoT ones, in particular
when coupled with agent-based technologies and methods, at both the individ-
ual and the collective level—when combined with an overall architectural view of
large-scale systems exploiting logic-based technologies. The idea behind micro-
intelligence is that it can be encapsulated in devices of any sort, making them
smart, as well as capable to work together in groups, aggregates, societies.

As a source of intelligence, we focus here on logic-based engines—in partic-
ular LP (logic programming) engines, offering inference capabilities spread all
over the network. The potential of logic-based model and its extensions is first
of all related to the observability and understandability of the entire system.
Declarativeness and explicit knowledge representation of LP enable knowledge
sharing at the most adequate level of abstraction, while supporting modular-
ity and separation of concerns [29], which are specially valuable in open and
dynamic distributed systems. As a further element, LP sound and complete
semantics naturally enables intelligent agents to reason and infer new informa-
tion in a sound way. Traditional LP has been proven to work well both as a
knowledge representation language and as an inference platform for rational
agents. Logic agents may interact with an external environment by means of a
suitably defined observe–think–act cycle. Finally, LP extensions or logic-based
computational models – such as meta-reasoning about situations [27] – could

Logic-Based Approaches for (M)MAS 25

be incorporated so as to enable complex behaviours tailored to the situated
components.

Accordingly, our result in the field are (i) the Logic Programming as a Ser-
vice – LPaaS henceforth [7] – model for distributing logic programs and logic
engines accordingly to the SOA architecture; (ii) the Labelled Variables in Logic
Programming (LVLP henceforth [4]) extension to the LP model to answer the
domain specificity issue of pervasive system; (iii) the possibility of exploiting
logic-based coordination artefacts and logical tuples with the ReSpecT coordi-
nation language [32] upon the TuCSoN MAS coordination middleware [39].

In the following we shortly discuss each contribution, while trying to provide
a general view of how logic-based models and technologies can be exploited to
inject intelligence into (M)MAS.

4 LPaaS & LVLP for Environment Intelligence

4.1 Vision

The novel LPaaS & LVLP models and architectures – and the corresponding
technology – express the concept of micro-intelligence defined above. In particu-
lar, we define two different, integrated models – namely, Logic Programming as
a Service and Labelled Variables in Logic Programming – designed so as to act
synergistically in order to support the distribution of intelligence in pervasive
systems.

One one side, the LPaaS architecture is designed so that LP can act as a
source of distributed intelligence for the IoT world, by providing an abstract view
of LP inference engines in terms of service. It exploits the XaaS (everything as a
service) metaphor to promote maximum availability and interoperability while
promoting context-awareness: any resource of any sort should be accessible as a
service (possibly an intelligent one) via standard network operations. From the
MAS viewpoint, LPaaS takes care of distributing knowledge as well as reasoning
capabilities in the agent environment based on LP.

On the other side, LVLP extends the LP model to enable diverse compu-
tational models, each tailored to a specific situated component, to coherently
and fruitfully coexist and cooperate within the same (logic-based) framework,
so as to cope with domain-specific aspects. From the MAS viewpoint, LVLP takes
care of embedding domain specific knowledge and reasoning capabilities at the
micro-level [48].

The added value of such a hybrid approach is to make it possible to exploit LP
for what it is most suited for – such as symbolic computation –, while delegating
other aspects – such as situated computation – to other most suitable languages
or computational levels.

4.2 LPaaS in a Nutshell

The LPaaS has been introduced in [5,6]. A detailed discussion on the technology
can be found in [3], whereas a comprehensive account was presented in [7].

26 A. Omicini and R. Calegari

The main idea behind LPaaS is to embed a (possibly situated) logic theory
in every computational device composing the MAS environment, along with a
working logic engine providing the system with basic inferential capabilities. Mul-
tiple theories are intended to be consistent under the fundamental assumption
that each logic theory describes axiomatically what is locally true—so, prevent-
ing logical inconsistency a priori. So, agents exploit both knowledge representa-
tion provided by logic theories and the inferential capabilities provided by logic
engines as a distributed service, injecting intelligence in MAS environment.

To do so, LPaaS promote a radical re-interpretation of some basic facets of
LP, moving LP towards the notion of situated service. Such a notion articulates
along four major aspects: (i) the preservation (with re-contextualisation) of the
SLD resolution process; (ii) stateless interactions; (iii) time-sensitive computa-
tions; (iv) space-sensitive computations. The SLD resolution process remains a
staple in LPaaS: yet, it is re-contextualised in the situated nature of the specific
LP service. This means that, given the precise spatial, temporal, and general
contexts within which the service is operating when the resolution process starts,
the process follows the usual rules of SLD resolution: situatedness is accounted
for through the service abstraction with respect to such three contexts.

From an architectural viewpoint, service-oriented architecture (SOA) nowa-
days represents the standard approach for distributed system engineering: so,
LPaaS adopts the Software as a Service architecture as its architectural ref-
erence [14]. Moreover, LP services in LPaaS can be fruitfully interpreted as
microservices [17].

Accordingly, the LPaaS abstraction represents a form of micro-intelligence,
enabling situated reasoning, interaction, and coordination in distributed systems,
as the process by which an entity is able reason about its local actions and the
(anticipated) actions of others so as to try and ensure the community acts in
a coherent manner. LPaaS means to empower reasoning in distributed systems
taking into account the explicit definition of the spatio-temporal structure of the
environment where situated entities act and interact, thus exploiting the inner
nature of pervasive systems while promoting environment awareness.

4.3 LVLP in a Nutshell

Specificity of local domains, however, might not be easily addressed by the
general-purpose approach of standard LP—in terms of both specific domain
knowledge and domain-specific inference. For instance, the typical LP language,
Prolog, is even untyped—which, roughly speaking, is good for generality, bad
for making applications domain specific.

To this end, specific domain intelligence can be injected in MAS environment
via Labelled Variables in Logic Programming, formally discussed in [4] and fully
developed in [4]. Basically, the LVLP approach is consistent with that part of
AI literature that has established that domain-specific knowledge is a major
determinant of the success of KIE systems such as expert systems [13].

LVLP builds upon the general notion of label as defined by Gabbay [19], and
adopts the techniques introduced by Holzbaur [21] to develop a generalisation of

Logic-Based Approaches for (M)MAS 27

LP where labels are exploited to define computations in domain-specific contexts.
LVLP allows heterogeneous devices in large-scale applications to have specific
application goals and manage specific sorts of information, enabling reactivity
to environment change while capturing diverse logic and domains exploiting the
concept of labelled variable.

An LVLP program is a collection of rules. LVLP rules have the form Head ←
Labelling ,Body , to be read as “Head if Body given Labelling”. There, Head is an
atomic formula, Labelling is the list of labelled variables in the clause, and Body is
a list of atomic formulas. By design, only variables can be labelled in LVLP. Given
two generic LVLP terms, the unification result is represented by the extended
tuple (true/false, θ, �) where true/false represents the existence of an answer, θ
is the most general unifier (mgu), and � is the new label associated to the unified
variables defined by the user defined (label-)combining function. The unification
process is extended by two functions: namely, the (label-)combining function
exploited during the unification of two labelled variables, and the compatibility
function exploited during the unification between a ground term and a labelled
variable, ensuring the term is compatible with the label of the variable when
interpreted in the domain of labels.

Among the many differences w.r.t. the approaches in the state of the art is the
fact that our approach does not change the basic of the logic language, which
remains the same, but allows for different specific extensions tailored to local
needs. Overall, the main idea behind LVLP is to enable diverse computational
models via labelled variables: each logic engine can exploit its own local label
systems tailored to the specific needs of situated components, to coherently and
fruitfully coexist side by side, interacting within a logic-based framework.

4.4 LPaaS & LVLP in (M)MAS

In [8] we discuss how the LPaaS architecture can be exploited to inject micro-
intelligence in MAS, by enriching the overall MAS architecture with the notion
of LPaaS agent/service, which allows for situated reasoning on locally-available
data by design. The LPaaS model can be further extended towards domain-
specific computations via LVLP.

As mentioned above, the multi-agent paradigm offers a powerful mecha-
nism for autonomous and situated behaviour, supporting social and cooperative
exchanges within organisations that are required for large-scale systems. Besides
autonomy, situatedness, and sociality, large-scale application scenarios such as
the IoT may benefit from other agent features – e.g., mobility and intelligence –
that could straightforwardly map onto the multitude of heterogeneous devices.
However, whereas mobility may come at a reasonable cost, intelligence is consid-
erably a more challenging issue, in particular when computationally expensive
technologies – such as machine learning, common-sense reasoning, natural lan-
guage processing, advanced situation recognition and context awareness – are
involved. Along this line, whenever local agent intelligence cannot be available
for any reason – i.e. memory constraints hindering the opportunity to have a local
KB, CPU constraints limiting efficiency of reasoning, etc. – a given agent may

28 A. Omicini and R. Calegari

Fig. 1. Overview of a LPaaS-LVLP MAS

simply request to another, “more intelligent” one, to perform some intelligent
activity on its behalf.

More interestingly here, intelligent activity could be also delegated to the
environment—for instance, relying on LPaaS-LVLP services instead of the agents.
In such a scenario, agents are always computationally efficient and responsive,
since they are able to delegate reasoning-related tasks – such as situation recogni-
tion, planning, inference of novel information, etc. – to dedicated infrastructural
services based on LPaaS-LVLP.

Figure 1 illustrates the model of the LPaaS-LVLP approach depicting the whole
picture where (1) some agents are designed as lightweight ones, and rely on infras-
tructural services (or other more “intelligent” agents) to get LPaaS functionalities;
(2) some agents embed the LPaaS-LVLP functionalities; (3) some LP functional-
ities are embedded in some services provided by the middleware (namely, by the
containers). In particular, at the bottom layer, the physical/computational envi-
ronment lives, with boundary artefacts [35] taking care of its representation and
interactions with the rest of the MAS. Then, typically, some middleware infras-
tructure provides common API and services to application-level software – i.e., the
containers where service components live – there including the coordination arte-
facts [35] governing the interaction space. Finally, on top of the middleware, the
application/system as a whole lives, viewed as a mixture of services and agents.

Logic-Based Approaches for (M)MAS 29

5 ReSpecT and Logical Tuples for Social Intelligence

5.1 Vision

In general, coordination artefact [37] are meant to encapsulate coordination poli-
cies for distributed systems, so as to inject social intelligence within computa-
tional systems [9]. By designing them as observable, coordination artefacts have
the potential to make social intelligence potentially explainable. By designing
them as malleable, coordination artefacts can make social intelligence adapt-
able [36]. In particular, logic-based coordination artefacts could in principle be
exploited to represent coordination policies in a declarative way, and also possi-
bly pave the way towards (partial) formalisation of large-scale systems.

In the context of MAS, social intelligence is another dimension that agent-
based models and technologies can fruitfully exploit—in particular by build-
ing agent societies around programmable, observable and malleable coordination
abstractions [35]. This is in fact the role of coordination models and technologies
[10], where coordination media are the basic abstractions around which agent
societies can be designed [11].

Agents and MAS are typically provided with coordination media via coordi-
nation middleware [12]: there, a multiplicity of distributed coordination media
are made available to the MAS so that each group of agents can interact within
a shared environment via a locally-deployed coordination medium The notion
of coordination as a service expresses precisely that: autonomous agents submit
themselves to the coordination policies embedded in a coordination medium by
choosing to interact with other agents through the medium itself, thus consti-
tuting an agent society [45].

5.2 TuCSoN and ReSpecT in a Nutshell

The TuCSoN coordination model [39] provides MAS with tuple centres [32]
that extend Linda tuple spaces [20] with programmability [15] based on the
ReSpecT [31] logic-based language. In particular, ReSpecT tuple centres contain
logic tuples in the tuple space, and ReSpecT specification tuples in the specifica-
tion space, which sets the coordinative behaviour of the medium by defining the
reaction of the tuple centres to relevant MAS events.

More precisely, a ReSpecT specification tuple is a special kind of first-order
logic tuple of the form reaction(E ,G ,R), where: E is the triggering event of the
reaction, that is, the coordination-related event – represented by the coordination
primitive invoked – whose occurrence triggers evaluation of the reaction; G is
the (set of) guard predicate(s) which must evaluate to true for the reaction to
actually execute—enabling fine-grained control over reactions execution; R is the
reaction body, that is, the set of Prolog computations and ReSpecT primitives to
execute to bring about the reaction effects.

Whereas the ReSpecT tuple space contains the (logic) tuples used for the com-
munication among agents, the ReSpecT specification space contains the (logic)
specification tuples used for the coordination of agents. So, ReSpecT tuple centres

30 A. Omicini and R. Calegari

exploit logic for both knowledge representation (in the communication space)
and coordination policies (in the coordination space) in agent societies.

Overall, ReSpecT tuple centres are programmable – via ReSpecT specifica-
tion tuples –, observable – in that both the basic and the specification tuples
can be accessed by the agents – and malleable—in that suitable specification
primitives can be used to change the ReSpecT behaviour specification at run-
time. Programmability of the coordination medium – along with the Turing-
equivalence of ReSpecT [16] – makes it possible to embed any computable coor-
dination policy within the coordination media, possibly allowing for intelligent
social behaviour—e.g., [33]. Observability of all tuples in a tuple centre makes
it possible to reason about the state and behaviour of the corresponding agent
society. Malleability of the tuple centre behaviour makes it possible to change
the (possibly intelligent) coordinative behaviour at run-time, thus paving the
way towards adaptability.

Moreover, a typical feature of tuple-based middleware – which clearly fits
large-scale scenarios – is the multiplicity of distributed coordination media made
available to the MAS: each group of agents can interact within a shared envi-
ronment via a locally-deployed coordination medium. Along this line, TuCSoN
middleware supports multiple ReSpecT tuple centres, which can be spatially dis-
tributed and connected via linkability [38]. Accordingly, ReSpecT tuple centres
can be designed to be locally deployed within a physically-distributed environ-
ment, with a (possibly huge) number of spatial containers and physical devices,
and correspondingly embodying the laws for local coordination, ruling the social
behaviour of the locally-interacting agents. Any coordination policy can then
be tailored to the specific needs of every locality in a large-scale scenario—thus
providing a way towards scalable coordination.

6 Conclusion

When properly integrated within agent-based models and technologies, logic-
based approaches have the potential to be exploited for knowledge representation
and reasoning at the large scale. In this invited paper we intentionally ignore
the role of logic within agents, by focussing instead on how logic-based models
can be exploited to inject micro-intelligence through agent societies and MAS
environment. By adopting LPaaS, LVLP, and ReSpecT as our reference logic-
based models and technologies, we discuss their potential impact upon large-
scale MAS for complex application scenarios such as the IoT.

Altogether, the logic-based approaches discussed in this paper can lead to
the overall architecture depicted in Fig. 2. There,

– distributed logic engines augment MAS environment with widespread micro-
intelligence

– exploited as standard services by components of any sorts, including intelli-
gent agents via LPaaS

– possibly enhanced as situated and domain-specific extensions via LVLP

Logic-Based Approaches for (M)MAS 31

Fig. 2. Overview LPaaS-LVLP-ReSpecT MAS architecture

– coordinated via ReSpecT logic-based artefacts, encapsulating social intelli-
gence

– based on a logic-based middleware like TuCSoN

In the end, whereas sub-symbolic approaches to AI are currently taking the
stage – especially in the eye of the public opinion – symbolic approaches, yet
with a long road ahead, still have the potential to be key players in the future
of large-scale intelligent systems.

References

1. Brownlee, J.: Clever Algorithms: Nature-inspired Programming Recipes (2011)
2. Calegari, R.: Micro-intelligence for the IoT: logic-based models and technolo-

gies. Ph.D. thesis, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
(2018). https://doi.org/10.6092/unibo/amsdottorato/8521

3. Calegari, R., Ciatto, G., Mariani, S., Denti, E., Omicini, A.: Micro-intelligence
for the IoT: SE challenges and practice in LPaaS. In: 2018 IEEE International
Conference on Cloud Engineering (IC2E 208), 17–20 April 2018, pp. 292–297. IEEE
Computer Society (2018). https://doi.org/10.1109/IC2E.2018.00061

4. Calegari, R., Denti, E., Dovier, A., Omicini, A.: Extending logic programming
with labelled variables: model and semantics. Fundam. Inform. 161, 53–74 (2018).
https://doi.org/10.3233/FI-2018-1695. Special Issue CILC 2016

https://doi.org/10.6092/unibo/amsdottorato/8521
https://doi.org/10.1109/IC2E.2018.00061
https://doi.org/10.3233/FI-2018-1695

32 A. Omicini and R. Calegari

5. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Towards logic programming as
a service: experiments in tuProlog. In: Santoro, C., Messina, F., De Benedetti, M.
(eds.) WOA 2016 – 17th Workshop “From Objects to Agents”, 29–30 July 2016.
CEUR Workshop Proceedings, vol. 1664, pp. 91–99. Sun SITE Central Europe,
RWTH Aachen University (2016). http://ceur-ws.org/Vol-1664/w14.pdf, Proceed-
ings of the 17th Workshop “From Objects to Agents” co-located with 18th Euro-
pean Agent Systems Summer School (EASSS 2016)

6. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic Programming as a Service
(LPaaS): intelligence for the IoT. In: Fortino, G., et al. (eds.) 2017 IEEE 14th
International Conference on Networking, Sensing and Control (ICNSC 2017), pp.
72–77. IEEE, May 2017. https://doi.org/10.1109/ICNSC.2017.8000070

7. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic programming as a service.
Theory Pract. Log. Program. 18(5–6), 846–873 (2018). https://doi.org/10.1017/
S1471068418000364. Special Issue “Past and Present (and Future) of Parallel and
Distributed Computation in (Constraint) Logic Programming”

8. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic programming as a service
in multi-agent systems for the Internet of Things. Int. J. Grid Util. Comput. (in
press)

9. Castelfranchi, C.: Modelling social action for AI agents. Artif. Intell. 103(1–2),
157–182 (1998). https://doi.org/10.1016/S0004-3702(98)00056-3

10. Ciancarini, P.: Coordination models and languages as software integrators. ACM
Comput. Surv. 28(2), 300–302 (1996). https://doi.org/10.1145/234528.234732

11. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: the
coordination viewpoint. In: Jennings, N.R., Lespérance, Y. (eds.) ATAL 1999.
LNCS (LNAI), vol. 1757, pp. 250–259. Springer, Heidelberg (2000). https://doi.
org/10.1007/10719619 19

12. Ciatto, G., Mariani, S., Omicini, A., Zambonelli, F., Louvel, M.: Twenty years
of coordination technologies: state-of-the-art and perspectives. In: Di Marzo Seru-
gendo, G., Loreti, M. (eds.) COORDINATION 2018. LNCS, vol. 10852, pp. 51–80.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92408-3 3

13. Crevier, D.: AI: The Tumultuous History of the Search for Artificial Intelligence.
Basic Books, New York (1993)

14. Cusumano, M.: Cloud computing and SaaS as new computing platforms. Commun.
ACM 53(4), 27–29 (2010). https://doi.org/10.1145/1721654.1721667

15. Denti, E., Natali, A., Omicini, A.: Programmable coordination media. In: Garlan,
D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, pp. 274–288.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63383-9 86

16. Denti, E., Natali, A., Omicini, A.: On the expressive power of a language for pro-
gramming coordination media. In: 1998 ACM Symposium on Applied Computing
(SAC 1998), Atlanta, GA, USA, 27 February–1 March 1998, pp. 169–177. ACM,
New York (1998). https://doi.org/10.1145/330560.330665. Special Track on Coor-
dination Models, Languages and Applications

17. Familiar, B.: Microservices, IoT, and Azure: Leveraging DevOps and Microservice
Architecture to Deliver SaaS Solutions, 1st edn. Apress, Berkely (2015)

18. Fortino, G., Guerrieri, A., Russo, W.: Agent-oriented smart objects development.
In: 2012 IEEE 16th International Conference on Computer Supported Cooperative
Work in Design (CSCWD 2012), pp. 907–912. IEEE, May 2012. https://doi.org/
10.1109/CSCWD.2012.6221929

19. Gabbay, D.M.: Labelled Deductive Systems, vol. 1. Oxford Logic Guides, vol.
33. Clarendon Press, Oxford (1996). http://global.oup.com/academic/product/
labelled-deductive-systems-9780198538332

http://ceur-ws.org/Vol-1664/w14.pdf
https://doi.org/10.1109/ICNSC.2017.8000070
https://doi.org/10.1017/S1471068418000364
https://doi.org/10.1017/S1471068418000364
https://doi.org/10.1016/S0004-3702(98)00056-3
https://doi.org/10.1145/234528.234732
https://doi.org/10.1007/10719619_19
https://doi.org/10.1007/10719619_19
https://doi.org/10.1007/978-3-319-92408-3_3
https://doi.org/10.1145/1721654.1721667
https://doi.org/10.1007/3-540-63383-9_86
https://doi.org/10.1145/330560.330665
https://doi.org/10.1109/CSCWD.2012.6221929
https://doi.org/10.1109/CSCWD.2012.6221929
http://global.oup.com/academic/product/labelled-deductive-systems-9780198538332
http://global.oup.com/academic/product/labelled-deductive-systems-9780198538332

Logic-Based Approaches for (M)MAS 33

20. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985). https://doi.org/10.1145/2363.2433

21. Holzbaur, C.: Metastructures vs. attributed variables in the context of extensible
unification. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631,
pp. 260–268. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55844-
6 141

22. Idelberger, F., Governatori, G., Riveret, R., Sartor, G.: Evaluation of logic-based
smart contracts for blockchain systems. In: Alferes, J.J., Bertossi, L., Governatori,
G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 167–183.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42019-6 11

23. Jamont, J.P., Occello, M.: Meeting the challenges of decentralised embedded appli-
cations using multi-agent systems. Int. J. Agent-Oriented Softw. Eng. 5(1), 22–68
(2016). https://doi.org/10.1504/IJAOSE.2015.078435

24. Kato, T., Chiba, R., Takahashi, H., Kinoshita, T.: Agent-oriented cooperation of
IoT devices towards advanced logistics. In: 2015 IEEE 39th Annual Computer
Software and Applications Conference (COMPSACW 2015), vol. 3, pp. 223–227,
July 2015. https://doi.org/10.1109/COMPSAC.2015.237

25. Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the Internet of Things
architecture, possible applications and key challenges. In: 10th International Con-
ference on Frontiers of Information Technology (FIT 2012), pp. 257–260, December
2012. https://doi.org/10.1109/FIT.2012.53

26. Larrucea, X., Combelles, A., Favaro, J., Taneja, K.: Software engineering for the
Internet of Things. IEEE Softw. 34(1), 24–28 (2017). https://doi.org/10.1109/MS.
2017.28

27. Loke, S.W.: Representing and reasoning with situations for context-aware pervasive
computing: a logic programming perspective. Knowl. Eng. Rev. 19(3), 213–233
(2004). https://doi.org/10.1017/S0269888905000263

28. Manzalini, A., Zambonelli, F.: Towards autonomic and situation-aware communi-
cation services: the CASCADAS vision. In: IEEE Workshop on Distributed Intelli-
gent Systems: Collective Intelligence and Its Applications (DIS 2006), pp. 383–388,
June 2006. https://doi.org/10.1109/DIS.2006.71

29. Oliya, M., Pung, H.K.: Towards incremental reasoning for context aware sys-
tems. In: Abraham, A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi, S.M.
(eds.) ACC 2011, Part I. CCIS, vol. 190, pp. 232–241. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22709-7 24

30. Omicini, A.: SODA: societies and infrastructures in the analysis and design of agent-
based systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 185–193. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44564-1 12

31. Omicini, A.: Formal ReSpecT in the A&A perspective. Electron. Notes Theor.
Comput. Sci. 175(2), 97–117 (2007). https://doi.org/10.1016/j.entcs.2007.03.006.
5th International Workshop on Foundations of Coordination Languages and Soft-
ware Architectures (FOCLASA 2006), CONCUR 2006, Bonn, Germany, 31 August
2006. Post-proceedings

32. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Sci. Comput. Program.
41(3), 277–294 (2001). https://doi.org/10.1016/S0167-6423(01)00011-9

33. Omicini, A., Denti, E., Natali, A.: Agent coordination and control through logic
theories. In: Gori, M., Soda, G. (eds.) AI*IA 1995. LNCS, vol. 992, pp. 439–450.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60437-5 43

https://doi.org/10.1145/2363.2433
https://doi.org/10.1007/3-540-55844-6_141
https://doi.org/10.1007/3-540-55844-6_141
https://doi.org/10.1007/978-3-319-42019-6_11
https://doi.org/10.1504/IJAOSE.2015.078435
https://doi.org/10.1109/COMPSAC.2015.237
https://doi.org/10.1109/FIT.2012.53
https://doi.org/10.1109/MS.2017.28
https://doi.org/10.1109/MS.2017.28
https://doi.org/10.1017/S0269888905000263
https://doi.org/10.1109/DIS.2006.71
https://doi.org/10.1007/978-3-642-22709-7_24
https://doi.org/10.1007/3-540-44564-1_12
https://doi.org/10.1007/3-540-44564-1_12
https://doi.org/10.1016/j.entcs.2007.03.006
https://doi.org/10.1016/S0167-6423(01)00011-9
https://doi.org/10.1007/3-540-60437-5_43

34 A. Omicini and R. Calegari

34. Omicini, A., Mariani, S.: Agents & multiagent systems: en route towards complex
intelligent systems. Intell. Artif. 7(2), 153–164 (2013). https://doi.org/10.3233/IA-
130056. Special Issue Celebrating 25 years of the Italian Association for Artificial
Intelligence

35. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: toward a theory of artefacts for
MAS. Electron. Notes Theor. Comput. Sci. 150(3), 21–36 (2006). https://doi.org/
10.1016/j.entcs.2006.03.003

36. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Auton. Agents Multi-Agent Syst. 17(3), 432–456 (2008). https://doi.org/
10.1007/s10458-008-9053-x. Special Issue on Foundations, Advanced Topics and
Industrial Perspectives of Multi-Agent Systems

37. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: environment-based coordination for intelligent agents. In: Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M. (eds.) 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), vol. 1, pp. 286–293.
ACM, New York, 19–23 July 2004. https://doi.org/10.1109/AAMAS.2004.10070

38. Omicini, A., Ricci, A., Zaghini, N.: Distributed workflow upon linkable coordi-
nation artifacts. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006.
LNCS, vol. 4038, pp. 228–246. Springer, Heidelberg (2006). https://doi.org/10.
1007/11767954 15

39. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Auton. Agents Multi-Agent Syst. 2(3), 251–269 (1999). https://doi.org/10.1023/
A:1010060322135. Special Issue: Coordination Mechanisms for Web Agents

40. Omicini, A., Zambonelli, F.: MAS as complex systems: a view on the role of declar-
ative approaches. In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT
2003. LNCS (LNAI), vol. 2990, pp. 1–16. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-25932-9 1

41. Savaglio, C., Fortino, G., Ganzha, M., Paprzycki, M., Bădică, C., Ivanović, M.:
Agent-based computing in the Internet of Things: a survey. In: Ivanović, M.,
Bădică, C., Dix, J., Jovanović, Z., Malgeri, M., Savić, M. (eds.) IDC 2017. SCI,
vol. 737, pp. 307–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
66379-1 27

42. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489 (2016). https://doi.org/10.1038/nature16961

43. Spanoudakis, N., Moraitis, P.: Engineering ambient intelligence systems using agent
technology. IEEE Intell. Syst. 30(3), 60–67 (2015). https://doi.org/10.1109/MIS.
2015.3

44. Tan, L., Wang, N.: Future internet: the Internet of Things. In: 3rd International
Conference on Advanced Computer Theory and Engineering (ICACTE 2010), vol.
5, pp. V376–V380, August 2010. https://doi.org/10.1109/ICACTE.2010.5579543

45. Viroli, M., Omicini, A.: Coordination as a service. Fundam. Inform. 73(4), 507–534
(2006). http://content.iospress.com/articles/fundamenta-informaticae/fi73-4-04.
Special Issue: Best papers of FOCLASA 2002

46. Xiang, C., Li, X.: General analysis on architecture and key technologies about
Internet of Things. In: IEEE International Conference on Computer Science and
Automation Engineering (CSAE 2012), pp. 325–328, June 2012. https://doi.org/
10.1109/ICSESS.2012.6269471

https://doi.org/10.3233/IA-130056
https://doi.org/10.3233/IA-130056
https://doi.org/10.1016/j.entcs.2006.03.003
https://doi.org/10.1016/j.entcs.2006.03.003
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1109/AAMAS.2004.10070
https://doi.org/10.1007/11767954_15
https://doi.org/10.1007/11767954_15
https://doi.org/10.1023/A:1010060322135
https://doi.org/10.1023/A:1010060322135
https://doi.org/10.1007/978-3-540-25932-9_1
https://doi.org/10.1007/978-3-540-25932-9_1
https://doi.org/10.1007/978-3-319-66379-1_27
https://doi.org/10.1007/978-3-319-66379-1_27
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/MIS.2015.3
https://doi.org/10.1109/MIS.2015.3
https://doi.org/10.1109/ICACTE.2010.5579543
http://content.iospress.com/articles/fundamenta-informaticae/fi73-4-04
https://doi.org/10.1109/ICSESS.2012.6269471
https://doi.org/10.1109/ICSESS.2012.6269471

Logic-Based Approaches for (M)MAS 35

47. Zambonelli, F.: Key abstractions for IoT-oriented software engineering. IEEE
Softw. 34(1), 38–45 (2017). https://doi.org/10.1109/MS.2017.3

48. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. Auton. Agents Multi-Agent Syst. 9(3), 253–283 (2004).
https://doi.org/10.1023/B:AGNT.0000038028.66672.1e. Special Issue: Challenges
for Agent-Based Computing

https://doi.org/10.1109/MS.2017.3
https://doi.org/10.1023/B:AGNT.0000038028.66672.1e

Integrating Internet of Services and
Internet of Things from a Multiagent

Perspective

Donghui Lin1(B), Yohei Murakami2, and Toru Ishida1

1 Department of Social Informatics, Kyoto University, Yoshida Honmachi,
Sakyo, Kyoto 606-8501, Japan

{lindh,ishida}@i.kyoto-u.ac.jp
2 Graduate School of Information Science and Engineering, Ritsumeikan University,

1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
yohei@fc.ritsumei.ac.jp

Abstract. To realize the Internet-based sociotechnical systems, it is
necessary to build a comprehensive and effective infrastructure to sup-
port the interaction between various cloud services on the Internet and
the physical world in which we live. For example, the information pro-
duced by the sensors is usually aggregated, processed and analyzed by
services in the cloud, which can be used by various stakeholders for
decision-making in many different application fields. Therefore, we need
to consider integrating the Internet of Services (IoS), which enables the
flexible sharing and composition of cloud services on the Internet, with
the Internet of Things (IoT), which represents the constellation of things
equipped with various sensors and actuators. The integration of IoS and
IoT often involves multiple parties and so must deal with complex issues
such as interaction, dynamics, scalability and decision making, all of
which can be studied from a multiagent perspective. In this paper, we
start by discussing the necessities and challenges for integrating IoS and
IoT. Then, we propose an integrated architecture and examine it from
two multiagent perspectives. One is to regard the integrated architec-
ture of IoS and IoT as a multiagent-based architecture considering var-
ious patterns of service composition and interaction. The other is to
apply multiagent methodologies when designing sociotechnical systems
for various application domains based on the integrated IoS/IoT architec-
ture. Moreover, we use the example application of designing multilingual
environments to discuss the above two perspectives with possible future
research directions.

Keywords: Internet of Things · Internet of Services ·
Sociotechnical systems · Multiagent systems

1 Introduction

The service-oriented architecture (SOA) is considered to be a key concept in
the Internet of Services (IoS), which enables service providers to deploy data,
c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 36–49, 2019.
https://doi.org/10.1007/978-3-030-20937-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-20937-7_3

Integrating Internet of Services and Internet of Things 37

software and business processes as Web services or cloud services on the Internet
[34]. Infrastructures based on SOA help service users create various real-world
applications easily by invoking and composing available cloud services. A typical
example of SOA usage is the Language Grid; it supports the sharing and creation
of various types of language services on the Internet by encouraging service users
to develop customized multi-language communication tools and intercultural
collaboration environments [16]. On the other hand, the emergence of Internet of
Things (IoT) in recent years has enabled things to be connected on the Internet.
Things in the IoT environments are monitored and controlled by sensors and
actuators [41]. The information collected by the IoT devices can be analyzed
and used for making decisions as well as triggering cloud services instantiated
on the IoS. IoS-based cloud services can also trigger sensors and actuators in
IoT environments.

To enable the easy development and deployment of application systems that
employ various cloud services on the Internet and things in the physical world, it
is necessary to build an integrated infrastructure to support interaction between
them. There are, however, several barriers to the integration of IoS and IoT;
key issues are extreme heterogeneity, ultra-large scale, and the dynamic nature
[17]. First, the extreme heterogeneity of cloud services and things renders service
composition based on the traditional SOA rather inefficient due to the issue of
interoperability. We need to deal with the interoperability of the cloud services
in the IoS infrastructure and things in the IoT environment. Second, the ultra-
large scale of cloud services and things negatively impact the performance of
any integrated architecture of IoS and IoT. Third, it is necessary to realize
new mechanisms for service composition that can deal with dynamic changes
in the availability of cloud services and things, as well as the user’s situation.
Moreover, the application systems based on IoS and IoT, which can be regarded
as Internet-based sociotechnical systems, always involve multiple stakeholders
and so are difficult to design.

Since the integration of IoS and IoT involves a complex social process of
service composition with important issues of interaction, dynamics, scalability,
heterogeneity and decision making, it can be considered from a perspective of a
multiagent system, which is composed of a set of agents that perform complicated
tasks by negotiation and cooperation [47–49]. The multiagent perspective has
already been used to investigate and interpret many existing systems such as
sensor networks [4], social networks [19] and crowdsourcing systems [18], which
will also be useful to explore effective methodologies for understanding behaviors
of various stakeholders and modeling comprehensive sociotechnical systems built
based on the integration of IoS and IoT.

In this paper, we propose an integrated architecture of IoS and IoT by using
the Language Grid as an example of IoS infrastructure. In the framework, we
mainly focus on the components for service composition based on cloud ser-
vices on IoS and things on IoT. Then we describe the proposed framework from
a multiagent perspective while emphasizing two specific aspects: architecture
integration and application design. We discuss the possibility of developing the

38 D. Lin et al.

integrated architecture of IoS and IoT as a multiagent-based architecture and
applying multiagent methodologies for designing sociotechnical systems based
on the integrated architecture. In this sense, we are not aiming to propose a new
agent framework for IoS/IoT integration in this paper; rather we try to under-
stand important issues and key concepts of the integration from the viewpoint
of multiagent systems.

The rest of this paper is organized as follows: In Sect. 2, we provide the
background of IoS and IoT, and then introduce the issues for integrating IoS and
IoT in Sect. 3. Section 4 describes a multiagent perspective for the integration of
IoS and IoT from two different aspects. Section 5 provides an example application
of multilingual environment design. Finally, the conclusion is presented in the
last section.

2 Background of IoS and IoT

2.1 Internet of Services (IoS)

The Internet of Services (IoS) can be explained in different ways depending on
the different definitions of services. In the research area of service-oriented com-
puting (SOC), services are usually defined as “self-describing, platform-agnostic
computational elements that support rapid, low-cost composition of distributed
applications [35].”

Service-oriented architecture (SOA) is a key concept to realize the IoS [37],
where software, data or business processes are deployed as Web services by ser-
vice providers and used by service clients or service users. In SOA, there are basic
services or atomic services that provide single functions of software or operations
of data, as well as composite services composed by multiple atomic services
to realize complicated functions or operations. Web services are evaluated by
Quality of Services (QoS), the metrics of which include several non-functional
attributes including cost, response time, availability, throughput, reputation and
so on [50]. Therefore, QoS-aware service selection and service composition are
essential technologies for IoS realization, which have been widely studied in the
research area of SOC.

IoS has already been discussed a lot from the multiagent perspective [12,43].
Service-oriented systems have been said to realize many of the ideas generated
in the research of multiagent systems. The multiagent-based SOC research chal-
lenges proposed involve pervasive service environments, society-inspired systems,
and computational service mechanisms [13]. Moreover, interaction protocols in
multiagent systems were applied for SOA in previous research and realized as a
commitment-based SOA [42].

Since IoS involves various services and stakeholders, it can be regarded as
a sociotechnical system where interaction between people and technology fre-
quently occurs. We adopted the sociotechnical approach [8,40] to develop the
Language Grid, an IoS infrastructure for language services [16]. The Language

Integrating Internet of Services and Internet of Things 39

Grid is a multilingual service infrastructure for supporting multi-language com-
munication and intercultural collaboration activities, and enables easy regis-
tration and sharing of various language resources such as online dictionaries,
bilingual corpora, morphological analyzers, and machine translators [14,27]. The
concept of the Language Grid is to address the language resource interoperabil-
ity by defining and implementing standardized language service interfaces for
service composition and customization. The Language Grid was used in our pre-
vious studies on QoS-aware service composition and recommendation [10,26],
combination of human services and Web services [23], and policy-aware service
execution [46].

2.2 Internet of Things (IoT)

The Internet of Things (IoT) fuses things with the Internet to enable easy inte-
gration of the physical world into cyberspaces [2]. IoT is regarded as a key
infrastructure in various application domains including the smart home, smart
city, smart factory, healthcare, transportation, agriculture and so on. Typical
enabling technologies in IoT include sensors and actuators, which are used to
monitor and control things in the real world. The information produced by things
in the IoT environments can be processed by cloud services and used by various
stakeholders for decision-making in their application domains. Therefore, the
technologies key to enabling current IoT-based applications include collecting,
processing and analyzing information from things, and making decisions from
the processed information. Since the information from IoT devices is regarded as
big data in many situations, advanced machine learning technologies are often
applied for analyzing such data. Moreover, high performance computing envi-
ronments are necessary to handle IoT big data for ensuring real-time processing
in various application domains.

Since IoT is an emerging idea, its architecture, enabling technologies, proto-
cols and standards are being widely discussed from different perspectives. Identi-
fication, sensing, communication, computation, service and semantics are seen as
key IoT elements, while big data analytics, cloud computing, high performance
computing and fog computing are regarded as supporting technologies for IoT
in a previous study [2]. IoT was also studied from an SOC perspective, where
the IoT architecture was described as consisting of sensing layer, networking
layer, service layer and interface layer [9]. However, IoT faces many challeng-
ing issues related to Quality of Services (QoS) including availability, reliability,
mobility, performance, scalability, security, management, and trust. Interoper-
ability is another important issue considering the heterogeneity of IoT device
types and specifications.

IoT has also been studied from a multiagent perspective, where an IoT-
enabled application is regarded as a social process involving multiple autonomous
parties making it possible to be realized as decentralized multiagent systems [41].
Moreover, decentralization, asynchrony and decoupled enactment, governance of
security, accountability and privacy were summarized as several important ele-
ments of IoT. Further, possible research directions in decentralized MAS has been

40 D. Lin et al.

proposed including programming models, interaction-oriented software engineer-
ing and enlightened governance. Since there are a large amount of devices con-
nected in the environment, massively multiagent systems could be a promising
design paradigm for IoT.

3 Issues for Integrating IoS and IoT

To build Internet-based sociotechnical systems like the multilingual environ-
ments, we are focused on the technologies needed to compose cloud services for
IoS environments. With the development of IoT infrastructure and the avail-
ability of various sensors and actuators, it has become possible to provide high-
quality services to users by satisfying their requirements in various situations.
For example, sensors can be used to detect users’ situational information like user
interests and degree of satisfaction with a multilingual interactive agent. Based
on this situational information, customized atomic services and composite ser-
vices in the IoS can be provided to users in different situations. Therefore, it is
important to consider integrating IoS and IoT for sociotechnical systems. How-
ever, there are several issues that we need to consider when integrating IoS and
IoT. Previous research in the SOC field has studied how the SOA paradigm may
be revisited to address the challenges posed by IoT, i.e. extreme heterogeneity,
ultra-large scale, and dynamic changes [17]. These IoT challenges greatly impact
the integration of IoS and IoT.

First, the extreme heterogeneity of IoS and IoT makes it difficult to form
composites of services and things. For example, the streaming data collected
by sensors in the IoT and the data of function-based cloud services in the IoS
have totally different granularities, making it difficult to combine them. In the
traditional SOA, service users can easily access and invoke Web services through
standardized protocols or lightweight message transfer frameworks. However, the
diversity of things and interaction styles between service users and providers
in the IoT environment makes it difficult to apply the SOA approach as is.
Therefore, it is necessary to consider middleware-level components for service
access in IoT [32,36]. That is, we need to deal with the issues by addressing how
to handle the interoperability of the services in the IoS infrastructure and things
in the IoT environment.

Second, the ultra-large scale of services and things poses a huge challenge
to the performance of the integrated IoS/IoT environment. Therefore, we need
to deal with the issue for ensuring real-time execution of services. In a pre-
vious study, we proposed a framework of parallel service execution in the IoS
infrastructure considering the policies of service providers [46]. We note that the
concepts of fog computing [5] and edge computing [39] were proposed to deal
with this issue in the IoT environments by handling data processing and event
processing in different layers of servers. However, more factors need to be con-
sidered for improving the performance of the integrated IoS/IoT environments,
including mechanisms for parallel execution of rules and handling of the massive
complex event processing.

Integrating Internet of Services and Internet of Things 41

Third, the dynamics of the integrated IoS/IoT environments has two aspects:
dynamic changes in available services/things, and dynamic changes in user sit-
uation. Therefore, the important issue here is that the integration framework
must ensure that service composition and recommendation can accept dynamic
changes in environment. Although we have conducted several studies on dynamic
service selection [26] and service recommendation [10] with the Language Grid on
the IoS platform, it is necessary to extend these studies into integrated IoS/IoT
environments.

4 A Multiagent Perspective on Integrated IoS/IoT

4.1 Integration of IoS and IoT

For the simplicity of explaining the integration of IoS and IoT, we use the Lan-
guage Grid as an example of IoS infrastructure. We developed and then operated
the Language Grid as an IoS infrastructure to support intercultural collabora-
tion for more than ten years. The Language Grid is built on general service grid
server software, and consists of five parts: service manager, service supervisor,
grid composer, service database, and composite service container [28]. Based on
the federated service grid architecture which seamlessly connects multiple ser-
vice grids [29], we also realized the federated operation of the Language Grid in
several Asian countries including Japan, Thailand, Indonesia and China. As of
March 2019, 226 language services are being shared on the federated Language
Grid. Moreover, an extended framework for service design was proposed with
the Language Grid by bridging the gap between stakeholders involved in lan-
guage service infrastructures and those who develop and operate multi-language
systems [25].

The key concept of IoS infrastructures like the Language Grid is to stan-
dardize the service interface for each category of resource (data, software, busi-
ness process, etc.), and enable flexible service management and service compo-
sition. In IoT environments, standardization and composition of things are also
regarded as important fundamentals [3]. For example, OpenIoT is one of the typ-
ical initiatives to realize standards for IoT [44], while Web of things is another
proposal for composing embedded devices on IoT [11]. Moreover, a SOA-based
IoT architecture has been proposed to realize flexible service composition with
trust management for IoT environments [7].

There are two aspects that we should consider in the integration of IoS and
IoT: development of the integrated architecture and design of real-world appli-
cations based on the integrated architecture. The remaining parts of this section
will discuss these two aspects from a multiagent perspective.

4.2 The Multiagent-Based Architecture

The first aspect is how to develop the integrated architecture by addressing the
complications hindering service composition and the interactions between IoS
and IoT. Here we consider some typical patterns of service composition and
interaction in the integrated IoS/IoT environments.

42 D. Lin et al.

1. Information of things in the IoT is collected and aggregated by sensors, and
it triggers the invocation of atomic services or composition of atomic services
in the IoS platform. For example, appropriate language supporting services
are invoked based on the information collected and analyzed from an eye-
tracker that identifies a non-native speaker’s difficulties during a multilingual
conversation [6].

2. Actuators in the IoT trigger invocation of atomic services or composition of
atomic services in the IoS platform. For example, the lightening of differ-
ent colors of IoT LED or push of different buttons triggers the invocation of
machine translation services with different input parameters (language com-
binations), which will be useful for multilingual support in international con-
ferences [30].

3. Execution of atomic services or composition of atomic services in the IoS
platform drives actuators or sensors on IoT. For example, whenever a com-
posite translation service is executed by a certain user, a group of sensors
like GPS and counter are driven to record the behavioral or situational data
of the user together with the service invocation information, which can help
improve the accuracy of situated service recommendation in the integrated
IoS/IoT environments [10].

Fig. 1. Multiagent-based integration of IoS and IoT

Since there are various types of complicated interaction, we can regard the
integrated IoS/IoT environments as a multiagent-based architecture as shown in
Fig. 1. The interaction between IoS and IoT can be realized by complex event
processing agents and rule agents that manage various rules including sensor data
aggregation rules, actuator driving rules, and service invocation rules. Complex
event processing agents and rule agents are key parts of the integration com-
ponents. Agents in the integration components interact with sensor data aggre-
gation agents, actuator driving agents, and service invocation agents in the IoS
and IoT sides to realize service composition.

Integrating Internet of Services and Internet of Things 43

The most important feature of the multiagent-based architecture is that it
should be designed to address the major issues of IoS/IoT integration described
in the previous section. Traditional characteristics of multiagent systems can
help deal with these issues in different ways. To deal with the heterogeneity of
cloud services and IoT devices, agents in both the IoS side and the IoT side
need to deal with the interoperability by interface matching and learning mech-
anisms. For example, sensor data aggregation agents are required to discover
an unregistered sensor that has the similar interface with a known type of IoT
devices. To address the challenge of ultra-large scale of services and things in
the environments, the rule agents and complex event processing agents need
to provide optimization mechanisms to ensure real-time processing of rules and
execution of services, which can probably be realized by solving constraint opti-
mization problems in the domain of traditional multiagent systems. To address
the dynamics of the integrated IoS/IoT environments, agent adaptations need to
be applied to deal with various dynamic changes, e.g. the fluctuation of available
services and devices in the environments.

4.3 Multiagent Methodologies for Service Design

We discussed the possibility of using the multiagent-based approach to deal with
the integrated components for IoS/IoT. However, it is also important to design
the application systems to be run on the integrated IoS/IoT environments, which
is the second aspect of the integration. Service design process with integrated
IoS/IoT environments always involves multiple stakeholders with different incen-
tives, and therefore multiagent methodologies can be applied.

In previous work, we studied the service design process for the IoS infras-
tructure [24]. To design sociotechnical systems for the real world, the iterative
service design approach is always applied; it consists of four phases: the obser-
vation phase is to understand user requirements and evaluation criteria for QoS;
the modeling phase is to define the service process that can best satisfy user
requirements by combining available cloud services based on QoS evaluations;
the implementation phase is to realize service composition by embedding com-
posited services into application systems; the analysis phase is to evaluate the
designed service by analyzing the log data and interview results based on the
defined QoS evaluation criteria [22]. This iterative service design process can
also be applied to the service design for integrated IoS/IoT environments.

Based on numerous experiences in service design, we adopted the multiagent
approach to propose field-oriented design methodologies [15]; this allows us to
deal with the service design in the field, where complex issues often arise. The
service design process always starts by understanding the problems in the field
and proposing services for solving those problems at an early stage. Due to
the interdependency between problems and their changes over time, it is more
important to develop a continuous problem solving process than to solve just
current problems. In this context, multiagent methodologies were proposed for
experiments on service design with multiple stakeholders, including role playing
games [45], participatory simulations [21] and gaming simulations [31].

44 D. Lin et al.

5 An Example Application of Multilingual Environment
Design

As our application, we use the example of designing a multilingual environ-
ment to illustrate the integration of IoS and IoT. Figure 2 shows a scenario of
multilingual conversion between an interactive agent and a user. In the sce-
nario, a German visitor is shopping at the Nishiki Market in Kyoto, a historic
Japanese marketplace; the multilingual interactive agent provides necessary sup-
port. When the visitor asks something in German, the interactive agent first
selects a composite translation service to translate it into Japanese. According
to the difficulty and language of the input sentences of the visitor, the service
invocation agent on IoS recommends a composite translation service, which usu-
ally consists of a speech recognition service, a machine translation service, and a
dictionary service of domain knowledge. Meanwhile, the sensor data aggregation
agent on IoT is interacting with the rule agent and complex event processing
agent by sending the event information about what the visitor is looking at. The
rule agent and complex event processing agent then trigger a composite dia-
logue generation service by interacting with the service invocation agent. In the
example shown in Fig. 2, the service invocation agent recommends a cultural-
oriented dialogue generation service that maps one concept in one culture (e.g.
Suguki, traditional Kyoto pickles shown in the top-right part of Fig. 2) into the
close concept in the other culture (e.g. Sauerkraut, which is a well-known dish
in Germany) for explanation. Similar examples of culturally-situated agent were
introduced in our previous work [1,20].

The dialogue between the interactive agent and the visitor in above exam-
ple seems simple, but its generation involves complicated interactions between
various agents on the integrated IoS/IoT environments and service composi-
tion based on situation-aware recommendation mechanisms. To realize such
high-quality multilingual environments with IoS and IoT, we must deal with
two major issues: realizing key technologies of the integrated IoS/IoT architec-
ture for service composition and designing multilingual interactive agents based
on the integrated architecture.

Situated Service Composition. Service composition is one of the most impor-
tant topics in the area of SOC, and this is also true in the integrated IoS/IoT
environments. Traditionally, service composition is a technology that combines
multiple atomic services in the IoS infrastructure to satisfy user requirements
of Quality of Services (QoS). Service composition can be realized by automat-
ically generating the service workflow through planning, constraint-based app-
roach, QoS optimization, and user-centered approach. The key lies in how to
select appropriate services to execute the service workflow since there are always
numerous atomic service candidates for the same function. One of the major
challenges in realizing this application is to combine various services on the inte-
grated service platform and establishing interaction between agents across IoS
and IoT. Unfortunately, existing service recommendation approaches do not fully
consider the influence of situation information, such as time, location, and user

Integrating Internet of Services and Internet of Things 45

relations thoroughly. Our solution is a situated QoS prediction for service rec-
ommendation that combines observed factor learning and latent factor learning.
The detailed proposed mechanism is described in our previous work [10]. The
situated service composition mechanism can be realized based on the multiagent
integrated architecture described in Fig. 1.

Fig. 2. An application of multilingual environment design with IoS and IoT

Multilingual Interactive Agents. Another issue in the example application
is to realize multilingual interactive agents. The interactive agents play essen-
tial roles in many fields [38]. For example, there are increasing demands in the
fields of tourism and healthcare to use interactive agents because of the human
resource shortage due to the aging population. In such circumstances, interac-
tive agents are required to handle dialogues with end users in various situations.
Moreover, it becomes important for interactive agents to provide multilingual
support to end users. However, it is always difficult to ensure the quality of
dialogues generated by the agent, especially at an early stage. Previous studies
widely used Wizard of Oz (WoZ) for prototyping and evaluating dialogue-based
computer systems that have not yet been realized. In our service design process,
we also apply WoZ to prototype and improve the interactive agent gradually. In
our proposed framework, the recommender system provides a candidate list of
dialogues to the Wizard based on service composition. The Wizard then selects
or creates appropriate dialogues and provides them to the interactive agent.
The detailed framework of interactive agent is described in our previous studies
[33]. The implementation process of the interactive agents can be regarded as a
participatory social system design process, which is a multiagent approach for
service design.

46 D. Lin et al.

6 Conclusion

This paper dealt with the issues of integrating Internet of Services (IoS) and
Internet of Things (IoT) for realizing Internet-based sociotechnical systems. We
described the integrated IoS/IoT architecture from a multiagent perspective.
First, we described the multiagent-based architecture suitable for the integration
by defining several interaction patterns between IoS and IoT. Then, we discussed
the possibilities of using multiagent methodologies in the design of sociotechnical
systems based on the integrated architecture. Further, we used an example of
designing multilingual environments to illustrate the multiagent perspective.

Our future work is to implement the key concepts in the multiagent perspec-
tive discussed in this paper for integrating IoS and IoT in comprehensive and
effective manner. Moreover, the discussed multiagent architectures and method-
ologies in this paper need to be extended to deal with the massive scale in
the context of integrated IoS/IoT, which may result in related future possible
research directions in massively multiagent systems.

Acknowledgement. This research was partially supported by a Grant-in-Aid for
Scientific Research (A) (17H00759, 2017–2020) and (B) (18H03341, 2018–2020) from
Japan Society for the Promotion of Science (JSPS).

References

1. Abou-Khalil, V., Ishida, T., Otani, M., Flanagan, B., Ogata, H., Lin, D.: Learning
culturally situated dialogue strategies to support language learners. Res. Pract.
Technol. Enhanc. Learn. 13(1), 10 (2018)

2. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet
of Things: a survey on enabling technologies, protocols, and applications. IEEE
Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

3. Bandyopadhyay, D., Sen, J.: Internet of Things: applications and challenges in
technology and standardization. Wireless Pers. Commun. 58(1), 49–69 (2011)

4. Bergenti, F., Franchi, E., Poggi, A.: Agent-based interpretations of classic network
models. Comput. Math. Organ. Theory 19(2), 105–127 (2013)

5. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, pp. 13–16. ACM (2012)

6. Cao, X., Yamashita, N., Ishida, T.: How non-native speakers perceive listening com-
prehension problems: implications for adaptive support technologies. In: Yoshino,
T., Chen, G.-D., Zurita, G., Yuizono, T., Inoue, T., Baloian, N. (eds.) CollabTech
2016. CCIS, vol. 647, pp. 89–104. Springer, Singapore (2016). https://doi.org/10.
1007/978-981-10-2618-8 8

7. Chen, R., Guo, J., Bao, F.: Trust management for SOA-based IoT and its appli-
cation to service composition. IEEE Trans. Serv. Comput. 9(3), 482–495 (2016)

8. Chopra, A.K., Singh, M.P.: From social machines to social protocols: software
engineering foundations for sociotechnical systems. In: Proceedings of the 25th
International Conference on World Wide Web, pp. 903–914. International World
Wide Web Conferences Steering Committee (2016)

https://doi.org/10.1007/978-981-10-2618-8_8
https://doi.org/10.1007/978-981-10-2618-8_8

Integrating Internet of Services and Internet of Things 47

9. Da Xu, L., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans.
Industr. Inf. 10(4), 2233–2243 (2014)

10. Dai, J., Lin, D., Ishida, T.: A two-phase method of QoS prediction for situated
service recommendation. In: 2018 IEEE International Conference on Services Com-
puting (SCC). IEEE (2018)

11. Guinard, D., Trifa, V.: Towards the web of things: web mashups for embedded
devices. In: Workshop on Mashups, Enterprise Mashups and Lightweight Compo-
sition on the Web (MEM 2009), in proceedings of WWW (International World
Wide Web Conferences), Madrid, Spain, vol. 15 (2009)

12. Huhns, M.N., Singh, M.P.: Service-oriented computing: key concepts and princi-
ples. IEEE Internet Comput. 9(1), 75–81 (2005)

13. Huhns, M.N., et al.: Research directions for service-oriented multiagent systems.
IEEE Internet Comput. 9(6), 65–70 (2005)

14. Ishida, T.: The language grid: service-oriented collective intelligence for language
resource interoperability. In: Ishida, T. (ed.) The Language Grid. Cognitive Tech-
nologies. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21178-
2 1

15. Ishida, T., et al.: Field-oriented service design: a multiagent approach. In: Maeno,
T., Sawatani, Y., Hara, T. (eds.) Serviceology for Designing the Future, pp. 451–
463. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55861-3 31

16. Ishida, T., Murakami, Y., Lin, D., Nakaguchi, T., Otani, M.: Language service
infrastructure on the web: the language grid. Computer 51(6), 72–81 (2018)

17. Issarny, V., Bouloukakis, G., Georgantas, N., Billet, B.: Revisiting service-oriented
architecture for the iot: a middleware perspective. In: Sheng, Q.Z., Stroulia, E.,
Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 3–17. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46295-0 1

18. Jiang, J., et al.: Understanding crowdsourcing systems from a multiagent perspec-
tive and approach. ACM Trans. Auton. Adapt. Syst. (TAAS) 13(2), 8 (2018)

19. Jiang, Y., Jiang, J.: Diffusion in social networks: a multiagent perspective. IEEE
Trans. Syst., Man, Cybern.: Syst. 45(2), 198–213 (2015)

20. Khalil, V.A., Ishida, T., Otani, M., Lin, D.: A culturally-situated agent to support
intercultural collaboration. In: Yoshino, T., Yuizono, T., Zurita, G., Vassileva, J.
(eds.) CollabTech 2017. LNCS, vol. 10397, pp. 130–144. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63088-5 12

21. Lin, D., Ishida, T.: Participatory service design based on user-centered QoS. In:
Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 01, pp. 465–
472. IEEE Computer Society (2013)

22. Lin, D., Ishida, T.: User-centered service design for multi-language knowledge com-
munication. In: Mochimaru, M., Ueda, K., Takenaka, T. (eds.) Serviceology for
Services, pp. 309–317. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-
54816-4 32

23. Lin, D., Ishida, T., Murakami, Y., Tanaka, M.: Qos analysis for service composition
by human and web services. IEICE Trans. Inf. Syst. 97(4), 762–769 (2014)

24. Lin, D., Ishida, T., Otani, M.: A value co-creation model for multi-language knowl-
edge communication. In: Maeno, T., Sawatani, Y., Hara, T. (eds.) Serviceology for
Designing the Future, pp. 435–447. Springer, Tokyo (2016). https://doi.org/10.
1007/978-4-431-55861-3 30

https://doi.org/10.1007/978-3-642-21178-2_1
https://doi.org/10.1007/978-3-642-21178-2_1
https://doi.org/10.1007/978-4-431-55861-3_31
https://doi.org/10.1007/978-3-319-46295-0_1
https://doi.org/10.1007/978-3-319-63088-5_12
https://doi.org/10.1007/978-4-431-54816-4_32
https://doi.org/10.1007/978-4-431-54816-4_32
https://doi.org/10.1007/978-4-431-55861-3_30
https://doi.org/10.1007/978-4-431-55861-3_30

48 D. Lin et al.

25. Lin, D., Murakami, Y., Ishida, T.: A framework for multi-language service design
with the language grid. In: Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2018), 7–12 May 2018. European
Language Resources Association (ELRA), Miyazaki, Japan (2018)

26. Lin, D., Shi, C., Ishida, T.: Dynamic service selection based on context-aware QoS.
In: 2012 IEEE Ninth International Conference on Services Computing (SCC), pp.
641–648. IEEE (2012)

27. Murakami, Y., Lin, D., Ishida, T.: Services Computing for Language Resources.
Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7793-7

28. Murakami, Y., Lin, D., Tanaka, M., Nakaguchi, T., Ishida, T.: Service grid archi-
tecture. In: Ishida, T. (ed.) The Language Grid, pp. 19–34. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21178-2 2

29. Murakami, Y., Tanaka, M., Lin, D., Ishida, T.: Service grid federation architec-
ture for heterogeneous domains. In: 2012 IEEE Ninth International Conference on
Services Computing (SCC), pp. 539–546. IEEE (2012)

30. Nakaguchi, T., Otani, M., Takasaki, T., Ishida, T.: Combining human inputters and
language services to provide multi-language support system for international sym-
posiums. In: Proceedings of the Third International Workshop on Worldwide Lan-
guage Service Infrastructure and Second Workshop on Open Infrastructures and
Analysis Frameworks for Human Language Technologies (WLSI/OIAF4HLT2016),
pp. 28–35 (2016)

31. Nakajima, Y., Otsuka, R., Hishiyama, R., Nakaguchi, T., Oda, N.: Gaming for
language services. In: Murakami, Y., Lin, D., Ishida, T. (eds.) Services Computing
for Language Resources. CT, pp. 193–208. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-10-7793-7 12

32. Ngu, A.H., Gutierrez, M., Metsis, V., Nepal, S., Sheng, Q.Z.: IoT middleware: a
survey on issues and enabling technologies. IEEE Internet Things J. 4(1), 1–20
(2017)

33. Okuno, R., Lin, D., Ishida, T., Otani, M.: Realizing multilingual interactive agents
through wizard of Oz. In: 2017 International Conference on Culture and Computing
(Culture and Computing), pp. 155–156. IEEE (2017)

34. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40(11), 38–45 (2007)

35. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and direc-
tions. In: 2003 Proceedings of the Fourth International Conference on Web Infor-
mation Systems Engineering, WISE 2003, pp. 3–12. IEEE (2003)

36. Razzaque, M.A., Milojevic-Jevric, M., Palade, A., Clarke, S.: Middleware for inter-
net of things: a survey. IEEE Internet Things J. 3(1), 70–95 (2016)

37. Schroth, C., Janner, T.: Web 2.0 and SOA: converging concepts enabling the inter-
net of services. IT Prof. 9(3), 36–41 (2007)

38. Shi, C., Ishida, T., Lin, D.: Translation agent: a new metaphor for machine trans-
lation. New Gener. Comput. 32(2), 163–186 (2014)

39. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

40. Singh, M.P.: Norms as a basis for governing sociotechnical systems. ACM Trans.
Intell. Syst. Technol. (TIST) 5(1), 21 (2013)

41. Singh, M.P., Chopra, A.K.: The internet of things and multiagent systems: decen-
tralized intelligence in distributed computing. In: 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pp. 1738–1747. IEEE
(2017)

https://doi.org/10.1007/978-981-10-7793-7
https://doi.org/10.1007/978-3-642-21178-2_2
https://doi.org/10.1007/978-981-10-7793-7_12
https://doi.org/10.1007/978-981-10-7793-7_12

Integrating Internet of Services and Internet of Things 49

42. Singh, M.P., Chopra, A.K., Desai, N.: Commitment-based service-oriented archi-
tecture. Computer 42(11), 72–79 (2009)

43. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes,
Agents. Wiley, Chichester (2005)

44. Soldatos, J., et al.: OpenIoT: open source Internet-of-Things in the cloud. In:
Podnar Žarko, I., Pripužić, K., Serrano, M. (eds.) Interoperability and Open-Source
Solutions for the Internet of Things. LNCS, vol. 9001, pp. 13–25. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16546-2 3

45. Torii, D., Ishida, T., Bousquet, F.: Modeling agents and interactions in agricul-
tural economics. In: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 81–88. ACM (2006)

46. Trang, M.X., Murakami, Y., Ishida, T.: Policy-aware service composition: pre-
dicting parallel execution performance of composite services. IEEE Trans. Serv.
Comput. 11(4), 602–615 (2018). https://doi.org/10.1109/TSC.2015.2467330

47. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence. MIT press, Cambridge (1999)

48. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, New York (2009)
49. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:

the Gaia methodology. ACM Trans. Softw. Eng. Methodol. (TOSEM) 12(3), 317–
370 (2003)

50. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

https://doi.org/10.1007/978-3-319-16546-2_3
https://doi.org/10.1109/TSC.2015.2467330

Architectures for Massively Multi-agent
Systems

Two-Layer Architecture for Distributed
Massively Multi-agent Systems

Yohei Murakami1(B), Takao Nakaguchi2, Donghui Lin3, and Toru Ishida3

1 Faculty of Information Science and Engineering, Ritsumeikan University,
1-1-1 Noji-Higashi, Shiga 525-8577, Japan

yohei@fc.ritsumei.ac.jp
2 The Kyoto College of Graduate Studies for Informatics,
10-5 Nishi-Kujo Teranomae-Machi, Kyoto 601-8407, Japan

ta nakaguchi@kcg.edu
3 Department of Social Informatics, Kyoto University, Yoshida-Honmachi,

Kyoto 606-8501, Japan
{lindh,ishida}@i.kyoto-u.ac.jp

Abstract. Existing massively multi-agent systems are aimed at han-
dling tens of thousands of agents on a single server or a computer cluster.
To this end, the agents are implemented as a data structure on the server
to run at high speed. However, in future IoS/IoT environments, it will be
necessary to deploy agents to distributed servers. Therefore, we propose
a two-layered architecture consisting of macro-agents and micro-agents:
the former controls the distributed environment and the latter solves the
problem cooperatively. The macro-agents pre-installed on servers form
a self-organized network by communicating with neighbor macro-agents.
On the other hand, micro-agents are implemented as data structures on
the server and solve problems under control of the macro-agents. An
example scenario is presented to illustrate how to apply the proposed
architecture to driving assistance with environment-embedded sensors.

Keywords: Massively multi-agent systems · Distributed systems

1 Introduction

The development of IoT (Internet of Things) requires large-scale multi-agent
systems (Massively Multi-Agent Systems) that can handle several million agents
deployed on distributed devices such as sensors in a real environment. However,
existing massively multi-agent systems focus on parallel processing, not large-
scale distributed processing, because all agents were assumed to be deployed on
a single server.

The agent server named Caribbean implemented an agent swap in/out tech-
nology to control memory and handle threads for large numbers of agents [11,12].
Caribbean represents agents as a data structure. The agent swap technology
unloads some agents and loads others into memory to implement a huge num-
ber of agents at high speed given that runtime processes will most likely not
c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 53–65, 2019.
https://doi.org/10.1007/978-3-030-20937-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-20937-7_4

54 Y. Murakami et al.

have enough memory to load all agents. CyberOrgs is a layered architecture for
distributed multi-agent systems [2–4]. This focuses on resource management for
agents that share distributed resources, but it lacks the perspective of open net-
work, where agents will often join and leave. However, it is required to deploy
massive numbers of agents on tens of thousands of networked servers in the
future open IoT environment where nodes will dynamically change.

In designing such a large-scale open distributed system, it is impossible to
know available agents beforehand. To solve this problem, we need to separate
implementation of the application logic (hereafter called scenarios) from meta
control that discovers available agents, assigns scenarios to them, and coordinates
the communication between them.

Therefore, this paper proposes a two-layered architecture for multi-agent sys-
tems; it combines micro-agents that concentrate on problem-solving with macro-
agents that manage micro agents. The macro-agents are pre-installed on each
server and network with other macro-agents in a self-organized way. On the
other hand, the micro-agents are implemented as data structures on the servers
and solve application-specific problems following the scenarios assigned under
macro-agents’ control. This system is named MMAS2L (Massively Multi-Agent
System with 2 Layers).

To allow macro-agents to coordinate interaction between micro-agents, we
have addressed the following issues.

Design two-layer architecture
In an open system where agents freely join and leave, it is necessary to sep-
arate scenario implementation from scenario assignment to agents and to
dynamically bind scenarios to agents according to the execution environ-
ment available. To this end, we need to design a two-layered multi-agent
system architecture consisting of two types of agents: the ones that solve
application-specific problems, and the others that discover the former and
assign scenarios to them.

Language specification for meta scenarios
To split meta-level control among problem-solving agents and the assign-
ment of application-specific scenarios, we need a way to describe a meta-
scenario for meta-level agents. Therefore, we must create a language suitable
for describing meta scenarios.

This paper starts by explaining the two-layer multi-agent system architecture
in Sect. 2 and then defines a language for describing meta scenarios in Sect. 3.
Lastly, we introduce an example of meta scenarios as applied to connected vehi-
cles in Sect. 4.

2 Two-Layer Architecture

This section outlines a two-layer multi-agent system architecture consisting of
micro-agents executing scenarios and macro-agents executing meta-scenarios.

Two-Layer Architecture for Distributed Massively Multi-agent Systems 55

Fig. 1. Massively multi-agent system with 2 layers.

2.1 Overlay Networks

To develop a multi-agent system for an open distributed environment, an overlay
network independent of physical networks is required so that the micro-agents
become independent of network configuration. To this end, we will introduce
macro-agents that organize an overlay network into a multi-agent system. The
macro-agents discover other macro-agents by using the physical network and
organize a virtual network of macro-agents. The macro-agents also construct an
overlay network for micro-agents that allows shared execution of an application
scenario and supports communications between micro-agents. As shown in Fig. 1,
MMAS2L forms a two-layer overlay network of macro-agents and micro-agents
on a physical network.

2.2 Overall Architecture

Figure 2 illustrates the MMAS2L architecture stack. The bottom layer holds
the physical links such as Bluetooth and ethernet/WiFi. The second layer orga-
nizes a network of nodes pre-installed with macro-agents. This layer is respon-
sible for detecting macro-agents’ participation and withdrawal. The third layer
is dynamic routing. This layer routes messages in the dynamically-organized
network. The fourth layer offers synchronous or asynchronous communication,
advertisements like broadcasting, and discovery. By using those functionalities,
macro-agents find available micro-agents that can execute a given scenario, and
create an overlay network consisting of those micro-agents. This overlay network
allows micro-agents to communicate with each other simply by using just micro-
agent ID. Furthermore, the third and fourth layer provides blockchain-based
data management for data persistence.

56 Y. Murakami et al.

Fig. 2. MMAS2L architecture stack.

2.3 Macro Agents

Macro-agents act autonomously according to a given meta scenario while remain-
ing on their pre-installed server. They first access a network predefined in their
meta scenario and search for other macro-agents to organize a network of macro-
agents. We assume the existence of several search modes. For example, they
can form a network of geographically-adjacent macro-agents by using an ad-
hoc network. Also, it is possible to prevent the network from expanding larger
than necessary by linking to only other macro-agents that control micro-agents
interacting with their micro-agents. Moreover, they can flexibly adjust the net-
work according to node changes by sensing macro-agents’ participation and
withdrawal to/from the network. In the dynamically-organized network, macro-
agents need to discover available micro-agents who can conduct a given scenario
in order to construct an overlay network of micro-agents. Therefore, they use a
contract net protocol to find suitable micro-agents within the network of macro-
agents. After the network of macro-agents is established, they control commu-
nications between massive micro-agents distributed across a huge number of
servers and migrate micro-agents depending on load status and network traffic
of each server.

2.4 Micro Agents

Micro-agents solve an application-specific problem in accordance with a given
scenario. The scenario allows the micro-agents to communicate with each other
by their ID assigned by the overlay network provided by their macro-agents
because the overlay network separates the scenario description from the physical
distributed environment. Furthermore, the overlay network shares events among
micro-agents that implement the same scenarios so that the micro-agents can
synchronously process their scenarios in an event-driven manner.

Two-Layer Architecture for Distributed Massively Multi-agent Systems 57

3 Meta Scenario

This section explains a language suitable for meta scenarios that demand the
control of massively-distributed multi-agent systems.

3.1 Scenario Description Language Q

To deploy a large number of agents across several tens of thousands of networked
servers like IoT, it is necessary to separate application logic from meta-control
that discovers available agents, assigns a scenario to them, and coordinates com-
munication between them.

This paper employs the scenario description language Q to describe a scenario
of application logic. Q is a language created to describe interactions between an
agent and the environment including other agents [1]. This allows application
developers to define agent behavior using their defined vocabularies suitable to
their domain because Q does not focus on the internal mechanism of the agents.
Q has already been used to describe agent behavior in multi-agent simulations
and an evacuation-guidance system [7,8].

In Q, a scenario is represented as an extended finite state machine. The
scenario consists of cues that require the agent to sense an event triggering a
state transition and actions that require the agent to affect its environment. The
main language functionalities of Q are explained below.

Cue and Action

An event that triggers interaction is called a cue. requireagents to observe their
environment. No cue is permitted to have any side effect. Cues wait for the
event specified until the observation is completed successfully. Once a cue has
been successfully performed, it returns #t. Cues are defined by defcue. Each
cue name begins with ?, such as ?hear and ?see.

Comparable to cues, actions are used to request agents to change their envi-
ronment. Two types of actions are prepared. One type is asynchronous action,
which can be executed independently of other actions; following actions do not
have to wait for completion of asynchronous actions. The other type, synchronous
actions, cannot be executed in parallel with other actions, and the following
actions have to wait for their completion.

Action is defined by defaction. Once an action has been successfully per-
formed, it returns #t. Each synchronous action name begins with !, and asyn-
chronous action names with !!. If a particular action needs to have both prop-
erties, we define both synchronous and asynchronous versions of the action (i.e.
!walk and !!walk).

Unlike functions in programming languages, the semantics of cues and actions
are not defined by Q. Since cues and actions are executed differently by different
agents, their semantics fully depend on the agent’s implementation.

58 Y. Murakami et al.

Guarded Command/Scenario

A guarded command is used to wait for several cues simultaneously. When any
of the cues is observed, the subsequent forms are executed. A scenario is used
for describing state transitions, and is defined by defscenario. Each state is
defined as a guarded command, but can also include conditions in addition to
cues. Scenarios can be called from other scenarios or functions.

For state transition, (go state) is used in forms following cues. In the case
that no state transition happens during the execution of forms, the scenario
terminates. A scenario returns the value of its last form.

Program 1. Definition of scenario

1(defscenario chat
2 (&pattern ($agent #f))
3 (greeting
4 ((?hear :from $agent :word "Hello")
5 (!speak :to $agent :sentence "Hello")
6 (go greeting))
7 ((?hear :from $agent :word "Bye")
8 (!speak :to $agent :sentence "Bye"))))

Take the example of a chat scenario consisting of one state; “greeting.” In
the “greeting” state, which is the initial state, the agent waits to hear “Hello” or
“Bye” from someone. If the agent hears “Hello,” it replies “Hello.” If the agent
hears “Bye,” it replies “Bye.” In both of cases, the agent returns to “greeting”
state to wait for hearing “Hello” or “Bye.”

Agent

An agent is generated by defining it with defsagent. Two keyword arguments
are required to define an agent. One, scenario, is to assign a specific scenario
to the agent, and the other, population, is to specify the number of agents
to be generated for the same scenario. Note that these keyword arguments are
optional. If keyword argument scenario is omitted, it is necessary to explicitly
describe scenario invocations. If keyword argument population is omitted, the
number of agents is set to one.

Program 2. Definition of agents

1(defagent participants
2 :scenario chat
3 :population 10)

The above example defines agent “participants” to execute scenario “chat.”
A unique ID is assigned to each agent. This ID can be acquired by evaluating
each agent’s name. If population is more than two, the list of IDs is bound to
the name of agents.

Two-Layer Architecture for Distributed Massively Multi-agent Systems 59

Table 1. Vocabulary for meta-scenario.

Type Vocabulary Explanation

Definition defmetascenario Define a meta-scenario

defmacroagent Define a macro-agent

defnetwork Define a physical network used to construct
a network of macro-agents

Network
control

!useNetwork Use the network defined by defnetwork to
construct a macro-agent network

!getNetwork Get the used network information

!setNetwork Update the used network information

?join Sense a macro-agent joining the used
network

?leave Sense a macro-agent leaving the used
network

Scenario
execution

!announce Announce a scenario to macro-agents in the
used network

!bid Bid for the announced scenario

?receiveAnnouncement Receive an announcement

?receiveBid Receive a bid

!bind Bind a scenario to a micro-agent

!unbind Unbind a scenario from a micro-agent

?finish Sense micro-agent completion of a scenario

!migrate Migrate a micro-agent to another
macro-agent

3.2 Extension of Q for Meta-scenario

The current version of Q does not support an open distributed environment
where agents can freely join and leave because it assumes scenarios are to be
assigned to agents created beforehand. We need a meta scenario to control sce-
nario execution such as dynamically creating agents according to the current
environment and flexibly assigning scenarios to newly created agents to organize
a multi-agent system.

In this paper, we employ an extended finite state machine to describe a meta
scenario, which is used to control multi-agent simulations [13]. Therefore, we use
the existing cues, actions, and guarded commands provided by Q to define cues
and actions for describing a meta scenario. Table 1 summarizes the defined cues
and actions.

The vocabularies are classified into three types: definition, network control,
and scenario execution management. The first defines a physical network for
distributed processing as well as the definitions of a meta scenario and macro-
agents. Macro-agents need to search for other macro-agents and establish a
network with them to enable collaboration among micro-agents. The formed

60 Y. Murakami et al.

network depends on the search range permitted by the physical network.
To define the search range of the physical network for exploration, we use
defnetwork. For instance, when we use a static network, the network is defined
as a list of IP addresses of servers running macro agents. On the other hand,
when we organize geographically adjacent macro-agents, the network is defined
by the number of hops in an ad-hoc network. That is, one hop means only
macro-agents within the same WiFi cell compose a network.

The second one defines cues and actions for controlling a network of macro-
agents. !useNetwork is used to organize a network of macro-agents on the physi-
cal network defined by defnetwork. Once the network is established, the network
must adapt to dynamic node changes. Therefore, ?join and ?leave are used to
sense macro-agents’ participation and withdrawal to/from the network. To recon-
figure the network according to the observed participation and withdrawal, we
define !getNetwork to get the current setting values and !setNetwork to update
the values. In the case of switching the network, !useNetwork is used again to
replace it with the new network defined by defnetwork.

The third one defines cues and actions for organizing a team of micro-agents
to solve an application-specific problem. A macro-agent firstly announces a
scenario to other macro-agents within the network to call for collaboration.
Upon receiving the announcement, the macro-agents who host micro-agents
that can conduct the scenario bid for the scenario. The announcing macro-
agent chooses appropriate micro-agents from the bids and assigns the scenario
to them. To implement this contract net protocol, we define two actions and
two cues: !announceTask, !bid, ?receiveAnnouncement, and ?receiveBid.
Furthermore, we also bind/unbind a scenario to/from a micro-agent by using
!bind and !unbind, and wait for the micro-agent to finish the scenario by
using ?finish. If the micro-agent must be moved to another macro-agent due
to resource shortages or network traffic, !migrate is used.

3.3 Example of Meta-scenario

This section presents an example of meta-scenario that switches micro-agents
executing a scenario according to a dynamic environment. Figure 3 illustrates the

Fig. 3. State transition diagram of a typical meta-scenario.

Two-Layer Architecture for Distributed Massively Multi-agent Systems 61

Program 3. Example of meta-scenario

1(defnetwork neighbours
2 :type "adhoc"
3 :hop 1)
4

5(defmetascenario casual-chat
6 (&pattern ($micro #f)
7 &pattern ($macro #f))
8 (announcement
9 (#t

10 (!useNetwork :name neighbours)
11 (!announce :scenario ’chat :to neighbours)
12 (go bid)))
13 (bid
14 ((?receiveBid :agent $micro :scenario ’chat :from $macro)
15 (!bind :scenario ’chat :to $micro)
16 (go execution))
17 (otherwise
18 (!announce :scenario ’chat :to neighbours)))
19 (execution
20 ((?finish :scenario ’chat :agent $micro))))

example as a state transition diagram. A circle and an arrow represent a state
and a state transition, respectively. Also, cues triggering a state transition and
actions with the transition are labeled on the arrow by the form of (cue/action).

The example meta-scenario consists of three states: announcement of sce-
nario, bid processing, and execution of scenario. In the first state, a macro-agent
advertises for available micro-agents that can conduct the “chat” scenario in a
network of macro-agents. In the bidding state, the macro-agent waits for other
macro-agents to bid for the scenario. If the macro-agent receives a bid, it assigns
the scenario to the bidding micro-agent and moves to the execution state. Oth-
erwise, the macro-agent announces it again. In the execution state, when the
macro-agent senses the micro-agent finish the scenario, it completes the meta-
scenario.

Program 3 describes the meta-scenario by using cues and actions defined in
Table 1. In this example, the macro-agent explores its WiFi network to discover
available micro-agents that can conduct the “chat” scenario because this example
defines a network as a one-hop ad-hoc network.

4 Application

This section introduces an application of MMAS2L to IoT. This application is a
driving assistance system using environment-embedded sensors to detect events
at blind spots.

4.1 Driving Control Using Environment-Embedded Sensors

The connected vehicles are assumed to have various on-board sensors such as
cameras and radar for sensing, however, they are not sufficient to detect events

62 Y. Murakami et al.

Fig. 4. Driving assistant system to detect events at blind spots.

at blind spots. By using sensors embedded in the environment as shown in Fig. 4,
we can address such problems and enhance the reliability and accuracy of event
detection [5].

To implement this application with MMAS2L, we pre-install macro-agents in
networked edge servers and deploy micro-agents on sensors connected to the edge
servers. Also, a macro-agent is set in each vehicle to host a vehicle micro-agent.
Figure 5 shows how the multi-agent system is dynamically self-organized in each
layer of macro-agents and micro-agents as a vehicle moves. The meta-scenario
of this application is presented as a state transition diagram in Fig. 6.

Fig. 5. Multi-agent system for driving assistance.

In this meta-scenario, a vehicle macro-agent organizes a network of macro-
agents using a two-hop ad-hoc network. The macro-agent announces “notify”

Two-Layer Architecture for Distributed Massively Multi-agent Systems 63

Fig. 6. State transition diagram of the meta-scenario for vehicle macro-agent.

scenario to the other macro-agents within the network. Macro-agents hosting
available sensor micro-agents that can execute the“notify” scenario can bid for
the scenario. When the vehicle macro-agent receives a bid, it binds the “notify”
scenario to the sensor micro-agent.

The macro-agent hosting the sensor micro-agent may leave the network as the
vehicle moves. In this case, the vehicle macro-agent unbinds the scenario from the
sensor micro-agent and announces the “notify” scenario to other macro-agents
within the network again. On the other hand, a new macro-agent may join the
network as the vehicle moves. To find a more appropriate or preferable sensor
micro-agent, the macro-agent also announces the scenario whenever the vehicle
macro-agent senses a new macro-agent participating in the network. If the vehicle
macro-agent receives a bid from a more preferable sensor micro-agent, it rebinds
the“notify” scenario to the new sensor micro-agent. By continuously discovering
a new or alternative micro-agents, this multi-agent system can provide a driving
assistance service that follows the moving car. Program 4 describes the meta-
scenario by using cues and actions defined in Table 1.

5 Conclusion

In this paper, we proposed MMAS2L, a two-layer architecture consisting of
micro-agents and macro-agents to develop large-scale distributed multi-agent
systems in an open environment. The micro-agents solve an application-specific
problem following a given scenario, while the macro-agents coordinate with other
macro-agents to construct an overlay-network among micro-agents. The purpose
of the macro-agents is to separate application logic from the physical network.
To this end, the macro-agents route messages among micro-agents and migrate
micro-agents according to resource availability and network traffic. Moreover, we
extended the existing scenario description language Q to describe meta-scenarios
that control scenario execution by micro-agents. To describe the meta-scenario

64 Y. Murakami et al.

Program 4. Meta-scenario for vehicle macro-agent.

1(defnetwork neighbours
2 :type "adhoc"
3 :hop 2)
4

5(defmetascenario sensor-composition
6 (&pattern ($micro #f) &pattern ($macro #f)
7 &pattern ($nmicro #f) &pattern ($nmacro #f))
8 (announcement
9 (#t

10 (!useNetwork :name neighbours)
11 (!announce :scenario ’notify :to neighbours)
12 (go bid)))
13 (bid
14 ((?receiveBid :agent $micro :scenario ’notify :from $macro)
15 (!bind :scenario ’notify :to $micro)
16 (go execution))
17 (otherwise
18 (!announce :scenario ’notify :to neighbours)
19 (go bid)))
20 (execution
21 ((?leave :agent $macro :from neighbours)
22 (!unbind :scenario ’notify :from $micro)
23 (!announce :scenario ’notify :to neighbours)
24 (set! $macro #f)
25 (set! $micro #f)
26 (go bid))
27 ((?join :agent $nmacro :to neighbours)
28 (!announce :scenario ’notify :to neighbours)
29 (set! $nmicro #f)
30 (set! $nmacro #f)
31 (go newcomer)))
32 (newcomer
33 ((?receiveBid :agent $nmicro :scenario ’notify :from $nmacro)
34 (go selection))
35 (otherwise
36 (go execution)))
37 (selection
38 ((prefer? $nmicro $micro)
39 (!unbind :scenario ’notify :from $micro)
40 (!bind :scenario ’notify :to $nmicro)
41 (set! $micro $nmicro)
42 (set! $macro $nmacro)
43 (go execution))
44 (otherwise
45 (go execution))))

usage, an application for connected-vehicles was presented. MMAS2L is appli-
cable to the Internet as well as geographically restricted networks. In the future,
we plan to use MMAS2L to construct a distributed crowdsourcing system for
creating low-resourced language resources. In this system, an editor micro-agent
discovers worker micro-agents that can understand target languages and makes
a group to create a bilingual dictionary or parallel corpus on demand [6,9,10].

Two-Layer Architecture for Distributed Massively Multi-agent Systems 65

Acknowledgements. This research was partially supported by a Grant-in-Aid for
Scientific Research (A) (17H00759, 2017–2020), a Grant-in-Aid for Scientific Research
(B) (18H03341, 2018-2020), and a Grant-in-Aid for Young Scientists (A) (17H04706,
2017–2020) from Japan Society for the Promotion of Science (JSPS).

References

1. Ishida, T.: Q: a scenario description language for interactive agents. IEEE Comput.
35(11), 42–47 (2002)

2. Jamali, N., Ren, S.: A layered architecture for real-time distributed multi-agent
systems. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–8 (2005)

3. Jamali, N., Zhao, X.: Hierarchical resource usage coordination for large-scale multi-
agent systems. In: Ishida, T., Gasser, L., Nakashima, H. (eds.) MMAS 2004. LNCS
(LNAI), vol. 3446, pp. 40–54. Springer, Heidelberg (2005). https://doi.org/10.
1007/11512073 4

4. Jamali, N., Zhao, X.: A scalable approach to multi-agent resource acquisition and
control. In: 4th International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2005), Utrecht, The Netherlands, 25–29 July 2005, pp.
868–875 (2005)

5. Koyama, J., Murakami, Y., Lin, D.: Situated sensor composition for event-based
system. In: 2017 IEEE International Conference on Services Computing, SCC 2017,
Honolulu, HI, USA, 25–30 June 2017, pp. 212–219 (2017). https://doi.org/10.1109/
SCC.2017.34

6. Murakami, Y.: Indonesia language sphere: an ecosystem for dictionary development
for low-resource languages. J. Phys. Conf. Ser. (2019)

7. Murakami, Y., Ishida, T., Kawasoe, T., Hishiyama, R.: Scenario description
for multi-agent simulation. In: The Second International Joint Conference on
Autonomous Agents & Multiagent Systems, AAMAS 2003, Melbourne, Victoria,
Australia, 14–18 July 2003, Proceedings, pp. 369–376 (2003)

8. Nakajima, Y., Shiina, H., Yamane, S., Yamaki, H., Ishida, T.: Caribbean/Q: a
massively multi-agent platform with scenario description language. In: 2006 Inter-
national Conference on Semantics, Knowledge and Grid (SKG 2006), Guilin, China,
1–3 November 2006, p. 26 (2006)

9. Nasution, A.H., Murakami, Y., Ishida, T.: Plan optimization for creating bilingual
dictionaries of low-resource languages. In: 2017 International Conference on Cul-
ture and Computing, Culture and Computing 2017, Kyoto, Japan, 10–12 Septem-
ber 2017, pp. 35–41 (2017)

10. Nasution, A.H., Murakami, Y., Ishida, T.: A generalized constraint approach to
bilingual dictionary induction for low-resource language families. ACM Trans.
Asian Low-Resource Lang. Inf. Process. 17(2), 9:1–9:29 (2018)

11. Yamamoto, G.: Agent server technology for managing millions of agents. In: Ishida,
T., Gasser, L., Nakashima, H. (eds.) MMAS 2004. LNCS (LNAI), vol. 3446, pp.
1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/11512073 1

12. Yamamoto, G., Tai, H., Mizuta, H.: A platform for massive agent-based simulation
and its evaluation. In: Jamali, N., Scerri, P., Sugawara, T. (eds.) AAMAS 2007.
LNCS (LNAI), vol. 5043, pp. 1–12. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85449-4 1

13. Yamane, S., Ishida, T.: Meta-level control architecture for massively multiagent
simulations. In: Proceedings of the Winter Simulation Conference, WSC 2006,
Monterey, California, USA, 3–6 December 2006, pp. 889–896 (2006)

https://doi.org/10.1007/11512073_4
https://doi.org/10.1007/11512073_4
https://doi.org/10.1109/SCC.2017.34
https://doi.org/10.1109/SCC.2017.34
https://doi.org/10.1007/11512073_1
https://doi.org/10.1007/978-3-540-85449-4_1
https://doi.org/10.1007/978-3-540-85449-4_1

Multi-agent Social Simulation for Social
Service Design

Itsuki Noda(B)

The National Institute of Advanced Industrial Science and Technology (AIST),
Tsukuba, Japan

i.noda@aist.go.jp

Abstract. Multi-agent social simulation (MASS) can be a powerful tool
for designing social systems and services. Due to increases in computa-
tional power and progress in the social big data field, we can now apply
MASS to real social systems, such as urban traffic and disaster response
scenarios. Here, we demonstrate several MASS applications and discuss
future possibilities and issues in this emerging domain.

Keywords: Multi-agent social simulation ·
Computational social science · Multi-agent systems ·
High-performance computing

1 Introduction

Computational social science is becoming a practical and useful tool for analyz-
ing, evaluating, and designing social systems. In particular, multi-agent social
simulation (MASS) can be utilized to predict social phenomena in rare or novel
situations such as disasters and future social scenarios. In addition, recent IT
developments, such as big data and high performance computing (HPC), have
brought computational social science to a point where it can be applied at a
practical engineering level.

Exhaustive simulation is one of the most fundamental elements of MASS
applications. The most significant weakness of MASS is the uncertainty of its
simulation models. Most MASS must include human behaviors as key compo-
nents of the simulation, but even cutting-edge models are not yet sufficiently
accurate to explain human behavior precisely. Consequently, we cannot simply
construct a single simulation and hope to predict future social phenomena accu-
rately. Exhaustive simulation enables us to deal with this weakness and obtain
a useful information from the simulation results.

In this article, I describe several MASS applications in the pedestrian and
traffic domains, and show how exhaustive MASS can be utilized in practice in
the social service field.

c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 66–80, 2019.
https://doi.org/10.1007/978-3-030-20937-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_5&domain=pdf
http://orcid.org/0000-0003-1987-5336
https://doi.org/10.1007/978-3-030-20937-7_5

Multi-agent Social Simulation for Social Service Design 67

2 Pedestrian Simulations

The main aim of pedestrian simulations is to predict the behavior of large crowds
that are walking in a certain area or along a given road network, and to eval-
uate methods of managing such crowds. They are often used to support the
evaluation of evacuation plans for disaster situations or to design passageway
layouts and management strategies for large events. In these scenarios, each
agent sets the speed and direction in which it walks based on its own goal, ten-
dencies/preferences, knowledge, and surroundings. In the above applications, the
walking agents are also crowded together such that their behavior affects that of
other agent. In this section, I describe two applications of MASS to evacuation
scenarios.

Multi-agent evacuation simulations will become an important tool for guiding
disasters management plans. Relatively few disasters or accidents have required
large-scale evacuations; therefore, it is difficult to obtain sufficiently large dataset
about such disasters to predict crowd behavior via big data analysis. MASS is,
therefore, an indispensable tool for designing evacuation plans.

However, when we conducting pedestrian simulations for evacuation scenar-
ios, we need to assess the simulation results very carefully. A straight-forward way
to apply evacuation simulations is to seek an optimal evacuation plan/guidance
for the given situation, but, this is unfeasible with current technology for two
reasons. The first issue is current human behavior models are not sufficiently
accurate. Unlike in physics, we do not have precise human behavior models;
therefore, we cannot construct simulations that will take the given circumstances
and predict future phenomena with absolute accuracy. The second issue is typ-
ically lack of the information to fully determine the simulation conditions in
disaster situations. Even if Internet of things (IoT) devices are deployed widely
across the town, there is still no guarantee we will obtain sufficient information
about the area, especially under disaster conditions, to run precise simulations.

In our projects, we have overcome these issues by following two rules. The
first is to run a large number of simulations under various conditions exhausting
all possible scenarios and repeating the process until we have obtained accurate
statistics illustrating the properties of each evacuation plan. The second rule is
not to use simulation results to answer evacuation plan optimization requests
directly. Instead, we aim to support the directors/leaders in making disaster
response decisions by showing them the characteristics of particular disaster
situations and the phenomena that are likely to occur during evacuation.

2.1 Efficiency/Complexity Trade-Off Analysis for Evacuation
Guidance

In evacuation planning, we must generally strike a balance between evacuation
time and the simplicity of the evacuation guidance. If we were to focus purely
on minimizing the evacuation time, it would be best to apply a mathematical
optimization technique such as maximum network-flow [3]. However, we also
need to guide large numbers of people, including many who are not acquainted

68 I. Noda

with the area, such as visitors; therefore, the guidance must also be simple enough
to understand and follow easily.

To investigate the relationship between these two objectives, we applied a
non-dominated sorting genetic algorithm (NSGA-II) [1], which is a genetic algo-
rithm (GA) for multiple objective optimization.

Here, the first objective function is the total evacuation time, estimated by
simulating the pedestrian behavior under a given guidance plan.

For the second objective function, which measured the evacuation plan’s
simplicity, we introduced “entropy” of the plan, as follows (Fig. 1). Suppose
two connecting zones, zi and zj in the target area have populations of ni and
nj , respectively. If the plan’s guidance for both zones sends pedestrians to the
same intermediate and final points, then the entropy of this zone pair is zero.
Otherwise, the entropy of is calculated as:

H(zi, zj) = −(ni/(ni + nj)) log(ni/(ni + nj))− (nj/(ni + nj)) log(nj/(ni + nj)).

Finally, we use total entropy H =
∑

zi,zj
H(zi, zj) as a measure of the plan’s

complexity (opposite value of its simplicity).

Fig. 1. Rule entropy

To simulate various evacuation scenarios, we employed CrowdWalk [15,16].
CrowdWalk is a pedestrian simulator that limits each person to move one dimen-
sionally along a given road network. The road network is composed of nodes
and links, and CrowdWalk can rapidly simulate the motion of large number of
pedestrians.

We used a road map of Nishiyodogawa-ku, consisting of 7,624 nodes (inter-
sections) and 10,707 road links (Fig. 2). This area has 86 official disaster refuges
and a population of 54,909, distributed across 146 smaller zones. We assumed
that each person in a given zone followed the same guidance rule, which asked
them to go to a particular destination with one intermediate point both marked

Multi-agent Social Simulation for Social Service Design 69

Fig. 2. Nishiyodogawa-ku area (top) and road map (bottom) used for the pedestrian
simulation

on a map. The destinations and intermediate points were selected from the 86
official refuges and a set of 533 major intersections, respectively.

To apply NSGA-II to this guidance plan, we utilized OACIS (see Sect. 4) to
manage the large number of runs required. The search space of this problem is
huge (R73×533146×86146) and NSGA-II requires a large number of populations
(about 100–1,000) of individuals in GA; therefore, we needed to run the sim-
ulator many times to achieve optimal results. For this experiment, we ran the
optimization process with 100 populations over 500 generations. Also, we ran 10
simulations for one guidance plan to calculate average evacuation time. In total,
we ran 500,000 simulations.

70 I. Noda

We implemented NSGA-II using Ruby API of OACIS. For the underlying
GA, we used “simulated binary crossover” and “polynomial mutation” to create
new generations, and Paleto ranking for the selection.

Figure 3 shows the experimental results when the pedestrians could use both
pedestrian paths and main roads. Here, horizontal and vertical axes indicate the
plan complexity (total entropy multiplied by 100), and evacuation time, respec-
tively. The color of each dot indicates the associated number of generations.
From these results, we can see that the evacuation plans improved as the GA
progressed, converging to limits of around 3000 for evacuation time and 2100
for plan complexity. Here, to minimize the evacuation time, we need to choose
a somewhat more complex plan (with a complexity of about 2200 rather than
2100). If we simplify plan any further, the evacuation time increases drastically
rising from around 3000 to 7000. In addition, we see that the most reasonable
plans are in the bottom-left of Pareto front in this graph.

Figure 4 shows the results when people could only use pedestrian paths. In
this case, the lower bound on the evacuation time increased to 4500, but the plan
complexity was similar to that in the previous case. Both Figs. 3 and 4 show that
pedestrian simulations with multi-objective optimization can illustrate the clear
trade-offs involved in selecting evacuation plans.

The characteristics of these trade-offs differ depending on the area features.
In the case of Nishiyodogawa-ku, the structure formed relatively sharp ‘L’ shape,
meaning that we could focus on the bottom-left region of the plot to find reason-
able evacuation plans. However, if we conducted the same analysis for a different
area, we could find a different structure. For example, Fig. 5 shows the analysis
results for a different area. In this case, the shape of Pareto front has a more
rounded shape, meaning that we would need to think more carefully about trade-
off between simplicity and plan effectiveness in the evacuation. In some area, we
might also need to introduce additional refuges to avoid such trade-offs. All this
shows that such simulations can provide useful information for those making
decisions about evacuation plans.

2.2 Evacuation Scalability Analysis

Another effective use-case of simulation for evacuation plan simulation is to clas-
sify the conditions resulting from particular disasters, as these can vary widely
depending on the nature of the disaster, particularly for natural disasters. It is
generally quite difficult to predict or estimate the conditions produced by a given
disaster in detail disasters beforehand; therefore, we need to prepare response
plans for a range of possibilities. However, it is not practical for first responders
or ordinary people to prepare, learn, and execute a large number of different
plans covering all possible conditions. To deal with this issue, we utilized evac-
uation simulations to classify a wide variety of possible conditions into a small
number of categories where the same plan would be similarly effective.

For this study, we chose a part of Kamakura (Fig. 6) as the target area, as
this is affected by large tsunamis immediately after large earthquake occur in
the Nankai Trough. In this area, there are seven administrative zones and three

Multi-agent Social Simulation for Social Service Design 71

Fig. 3. Evacuation simulation results (with wide roads) (Color figure online)

Fig. 4. Evacuation simulation results (narrow roads only)

Fig. 5. Paleto solutions for another map

72 I. Noda

Fig. 6. Evacuation zones and refuges in Kamakura area.

official refuges. As in our previous experiments, we assumed that the people in
each zone were guided to a particular refuge by the evacuation plan, meaning that
the total number of possible evacuation plans was 37 = 2187. For each scenario,
we focused on the number of people that had to be evacuated from each area.
If there are relatively few people, the best plan is for them to simply go to the
nearest refuge. However, as the number of people increases, road congestion may
hinder the evacuation process. In such cases, the responders need to guide people
more carefully. The questions here are, what is the population threshold where
we must switch from the simple plan to the more detailed one, and how many
such detailed plans will be needed for a given population size?

To answer these questions, we simulated all 2187 possible evacuation plans
for several different population sizes (ranging from 70 to 10,000), calculating
the evacuation time correlation coefficients between each pair of populations.
Figure 7 shows the resulting correlation matrix. Here, blue and red indicate pos-
itive and negative correlations, respectively, and color’s saturation indicates the
magnitude of the correlation. These results show a clear division between pop-
ulations of 1000 and 1500. This indicates, we need to have at least two plans
corresponding to populations below 1000 and above 1500, respectively.

Figure 8 illustrates what these correlation coefficients mean. In this graph,
the horizontal and vertical axes indicate the guidance plan and evacuation time,
respectively, with the guidance plans sorted by evacuation time in terms of their
effectiveness for populations of 70 (top) and 5000 (bottom). The dot colors indi-
cate the actual population sizes. In the top graph, the evacuation time for a
population of 10000 varies quite significantly even with simple evacuation plans.
On the other hand, in the bottom graph, we can see that the evacuation time
still depends on the plan; however, there is a clear trend. This indicates that,
while evacuation plans that are good for 5000 people may also work well for
10000, plans designed for 70 people may not work for 1000, with the bound-
ary between the two categories falling between 1000 and 1500. If we study
the correlation changes shown in Fig. 7 in more detail, we also find another
weak boundary between 7000 and 9000. Although we should not determine the

Multi-agent Social Simulation for Social Service Design 73

Fig. 7. Evacuation time correlations between populations of different sizes

Fig. 8. Evacuation time variation for different plans, sorted by their results for popu-
lations of 70 (top) and 5000 (bottom).

number of population categories purely on the basis of such an analysis, this type
of information will be useful for local governments and first responders helping
them to prepare a variety of evacuation plans.

3 Transportation Simulations for On-Demand Traffic
Systems

Traffic simulations can also be used to help evaluate novel transportation ser-
vices. Due to the spread of mobile IT devices and the sharing economy, several

74 I. Noda

new transportation services are being planned and introduced. These services
are technology-oriented, and have the potential to shake up the transportation
systems in both local areas and large cities.

Meanwhile, aging societies such as Japan are facing serious problems with their
public transportation systems. As their people age and their populations drop, it
is becoming increasingly difficult for them to maintain transportation service level
for both residents and travelers. Therefore, these newly-developed transportation
services are attracting great interest as a solution to such problems.

This leads us to the following question: Can such a novel transportation
service replace traditional means of transportation and maintain the service
levels in future as societies age? So far, services such as Uber has been successfully
filling hitherto-untapped niches but have not been able to completely replace
traditional modes of transport. It is currently unclear how feasible it would be
to gradually introduce such systems city-side.

We have been applying MASS in this domain since 2002 [11,12], and have
designed a demand-responsive transportation system called the Smart Access
Vehicle Service (SAVS). SAVS is a type of taxi-sharing or dial-a-ride bus system,
based on a simple fundamental idea. As shown in Fig. 9, SAVS users input their
transportation needs (origin and destination locations) at the time when he/she
wants to move. Then, the SAVS server combines these requests in real time
and calculates the best way to assign the passengers to vehicles. To do this, it
tries to assign a multiple users to the same vehicle if they are going in similar
directions and share the vehicle. In this way SAVS has advantages for both
user-side and operator-side. For a user-side, it reduces the transportation cost
by enabling users to share vehicles. For the operator-side, it enables them to
utilize their vehicles more effectively while providing a high level of door-to-door
transportation service. That said, we still face the same question: Is SAVS more
effective than traditional transportation services, such as fixed-route bus systems
(FRBS) and taxi, and can it replace them?

Fig. 9. SAVS system diagram.

Multi-agent Social Simulation for Social Service Design 75

When we began this study, we attempted to compare the effectiveness of
SAVS with that of an FRBS, as FRBSs are the most popular services for every-
day use. However, in aging societies, the decreasing number of users and the
consequent reductions in frequency and routes of buses form a vicious cycle. To
be a viable to alternative to such FBRS services, SAVS needs to demonstrate
better performance in such circumstances.

Fig. 10. Grid town used for SAVS simulations.

To compare these two services, we conducted simulation experiment based
on a simple grid town, as shown in Fig. 10. Here, we assumed that the town’s
residents made random transport requests, whose origin and destination points
were selected uniformly at random over the town. The town size was fixed, but
the demand frequency was varied. To compare the performance of SAVS and
the FBRS fairly, we tried to optimize the operation of both services. However,
because these are hard optimization problems, we instead used semi-optimal
solutions. For SAVS, we used the “successive best insertion” method, where each
new request was assigned to the vehicle that could accept the new passenger with
the least penalty to the already-assigned requests. For the FBRS, we applied
GA to find the best possible set of routes for the town. Since this depends on
the number of buses being used, we sought the best routes for several different
numbers of buses.

In our simulations, we varied the number of buses and the demand frequency,
calculating the average travel time for each passenger for both approaches under
all test conditions. Here, we assumed that the FBRS would run on time, regard-
less of the number of passengers, meaning that the average travel time was
not affected by the demand frequency. On the other hand, the SAVS travel
time was quite sensitive to the demand frequency. Figure 11 shows the simula-
tion results. Here, the horizontal and vertical axes indicate the number of buses
and the average travel time, respectively. From a service usability viewpoint,

76 I. Noda

Fig. 11. Performance (Average Travel Time) of SAVS (thin lines) and FRBS (thick
red line) versus Number of Buses (Color figure online)

lower travel times are better. The thick red line shows how the FRBS perfor-
mance varied with the number of buses, while the thin lines show the SAVS
results. For SAVS, we assumed that the number of buses increased according to
the demand frequency, but considered several different ratios of the demand to
the number of buses, shows as different lines on the plot.

From Fig. 11, we can see several significant points. In general, the perfor-
mance of both SAVS and the FRBS improved when as number of buses operat-
ing increased. This makes sense, because operating more buses gives users more
options (FRBS) and using more vehicle makes the service more flexible (SAVS).
Another, more significant, feature is the travel time drops more rapidly with
SAVS than with the FRBS. In all cases, the SAVS travel time quickly falling
below that for the FRBS at a certain operation scale (number of buses). This
means that, when there are sufficiently many users SAVS can perform better
than the FRBS.

Fig. 12. Performance for Hakodate residents, for different numbers of vehicles

Multi-agent Social Simulation for Social Service Design 77

Fig. 13. Changes in travel time due to replacing a some bus services by SAVS in
Hakodate City.

Based on these results, we developed a real SAVS system, as shown in Fig. 9,
running several experimental and practical services [2,7]. In these experiments,
we also utilized simulation analysis to determine an appropriate operation scale
(area covered and number of vehicles).

We also conducted several simulation analyses for possible future societies.
For example, we imagined a scenario where all residents of Hakodate, a city
with a population of about 300,000 and about 100,000 private cars, used SAVS
instead of their own cars. Based on real person-trip data, we analyzed how the
average waiting time per trip changed with the number of vehicle operated.
Figure 12 shows the simulation results. These indicate that SAVS with 3,000 or
5,000 vehicles could operate with an average waiting time of less than 10 min.
If we could realize the service on such a scale, we could drastically reduce the
number of vehicles in the city, and completely eliminate traffic jams.

Next, we conducted a simulation analysis to evaluate effectiveness of grad-
ually introducing SAVS to replace the current FRBS in Hakodate [4]. For this
analysis, we removed some of the existing bus routes and introduced an equiv-
alent SAVS to cover the demand for that area. Figure 13 shows the analysis
results. This graph indicates that replacing about 60% of existing bus services
would provide the best SAVS/FRBS mix, minimizing the travel time of bus
users.

These results provide strong evidence that demand-responsible transporta-
tion such as SAVS could form a part of future transportation networks. Such
analyses are only possible due to conducting large numbers of simulations under
different conditions, which enables us to summarize the features of potential
novel social services.

78 I. Noda

4 OACIS: Exhaustive Simulation Framework

Exhaustive MASS generally requires substantial computational power. For exam-
ple, the analyses conducted for the applications described above required the
simulation to be run many times. Fortunately, increases in computational power
brought by supercomputer or cloud computing technologies have the potential to
enable computer simulations to be applied more widely, not only to physical phe-
nomena but also to social issues. To take advantage of high-performance comput-
ing resources, we established the CASSIA project [8,10], which provides several
frameworks for large-scale and exhaustive social simulations.

The Organizing Assistant for Comprehensive and Interactive Simulations
(OACIS) [6], a product of the products of CASSIA project, provides the ability
to manage large numbers of simulation analysis jobs systematically and automat-
ically. It is designed to handle exhaustive simulation analyses involving millions
of runs. For such tasks, taking a naive manual approach to job management is
both difficult and prone to human errors. In contrast, execution via OACIS is
both stable and flexible, enabling researchers to conduct large-scale simulations
in an efficient, reliable and reproducible way.

Figure 14 shows the OACIS system architecture. It was designed as a Web
application built using the Ruby on Rails framework and provides both an inter-
active user interface and a batch-oriented command-line interface. When a user
creates a job via the Web or a command-line interface, the application server
creates a record of the job in the database. Another daemon process, “worker”,
manages a set of remote hosts (which we call “computational hosts”), running
simulation jobs on these hosts by sending appropriate scripts to them over SSH.
The worker also periodically checks the status of the submitted jobs and, when
a job is complete, it downloads the results, stores them in the designated storage
and database. The execution process is recorded in a traceable way to ensure

Fig. 14. Overview of the OACIS system.

Multi-agent Social Simulation for Social Service Design 79

reproducibility. A range of logs, including parameter values, execution dates,
elapsed times, and simulator version numbers are automatically maintained,
both in the database and on the file system. OACIS can handle wide range
of different simulator types that can be run from the command-line.

OACIS also provides plug-in interface that gives us greater control mecha-
nisms. For example, while default method of executing an OACIS project is to
conduct fine-grained search of the whole parameter space, we can also introduce
more intelligent methods of searching parameter space, such as GA, Bayesian
optimization, and design-of-experiment as plug-in modules. Currently OACIS
accepts modules written in the Ruby or Python programming languages. The
evacuation planning application (Sect. 2.1) is a typical example of plug-in usage.

We believe that exhaustive MASS management tool such as OACIS will be
one of the keys to making MASS practical for real applications. OACIS is avail-
able as open-source software under an MIT license (http://github.com/crest-
cassia/oacis).

5 Concluding Remarks

Exhaustive simulation and analysis are a fundamental utilizing MASS for prac-
tical applications. As the three example applications in this article illustrate,
exhaustive MASS can illustrate the features of social phenomena from several
different points of view. As part of the CASSIA project, we have also worked
on other MASS applications, such as stock market [5,14,17] and general traffic
simulations [13].

Historically, one drawback of exhaustive MASS has been that it requires
enormous computational power. Fortunately, recent progress in computer device
and HPC technology has enabled such a brute-force approach to become prac-
tical. We have previously investigated the relationship between HPC progress
and MASS applications, drawing up MASS and HPC roadmaps [9]. According
to these roadmaps, it will soon be possible to apply exhaustive MASS approach
at an even larger scale, such as simulating traffic across metropolis.

At some point in the future, we may develop more feasible and accurate
models for simulating human and social behaviors, but, this is likely to take sev-
eral decades. Until then, we believe exhaustive MASS will become the dominant
approach to computational social science.

Acknowledgement. The authors acknowledges partial support from MEXT as part
of the “Exploratory Challenges on Post-K computer (Studies of multi-level spatiotem-
poral simulation of socioeconomic phenomena)”. This research used the computational
resources of the K computer provided by the RIKEN Center for Computational Science
through the HPCI System Research project (Project ID: hp170266 and hp170345).

http://github.com/crest-cassia/oacis
http://github.com/crest-cassia/oacis

80 I. Noda

References

1. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45356-3 83

2. Nakashima, H., et al.: One cycle of smart access vehicle service development. In:
Maeno, T., Sawatani, Y., Hara, T. (eds.) Serviceology for Designing the Future, pp.
287–295. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-55861-3 17

3. Kobayashi, K., Narisawa, R., Yasui, Y., Fujisawa, K.: Experimental analyses of
the evacuation planning model using lexicographically quickest flow (in japanese).
Trans. Oper. Res. Soc. Jpn. 59, 86–105 (2016). https://doi.org/10.15807/torsj.59.
86

4. Miyachi, M., Noda, I.: Evaluation method for gradual introduction of demand-
responsible public transportation system by simulation. In: Proceedings of WSSIT.
ICS1, March 2015

5. Mizuta, T., Kosugi, S., Kusumoto, T., Matsumoto, W., Izumi, K.: Effects of dark-
pools on financial markets’ efficiency and price discovery function: aninvestigation
by multi-agent simulations. Evol. Inst. Econ. Rev. 12(2), 375–394 (2015). https://
doi.org/10.1007/s40844-015-0020-3

6. Murase, Y., Uchitane, T., Ito, N.: A tool for parameter-space explorations. Phys.
Procedia 57, 73–76 (2014)

7. Nakashima, H., et al.: Design of the smart access vehicle system with large scale
MA simulation. In: Proceedings of the 1st International Workshop on Multiagent-
based Societal Systems (MASS 2013), May 2013

8. Noda, I.: Project CASSIA: framework for administration of social simulations on
massively parallel computers. In: Proceedings ofd ATIP workshop 2014 in SC14,
November 2014

9. Noda, I., Ito, N., Izumi, K., Mizuta, H., Kamada, T., Hattori, H.: Roadmap and
research issues of multiagent social simulation using high-performance computing.
J. Comput. Soc. Sci. 1(1), 155–166 (2018)

10. Noda, I., et al.: Roadmap for multiagent social simulation on HPC. In: Kurihara,
S., Hattori, H. (eds.) Proceedings of DOCMAS-WEIN 2015, December 2015

11. Noda, I., Masayuki, O., Kumada, Y., Nakashima, H.: Usability of dial-a-ride sys-
tems. In: Proceedings of AAMAS-2005, p. 726, July 2005

12. Ohta, M., Shinoda, K., Noda, I., Kurumatani, K., Nakashima, H.: Usability of
demand-bus in town area. Technical report 2002-ITS-11-33, vol. 2002, no. 115,
ISSN 0919–6072, Reports of ITS meeting in IPSJ, November 2002

13. Osogami, T., et al.: IBM mega traffic simulator. IBM Res. Dev. J. (2013). RT0896
14. Torii, T., Izumi, K., Yamada, K.: Shock transfer by arbitrage trading: analysis

using multi-asset artificial market. Evol. Inst. Econ. Rev. 12(2), 395–412 (2016)
15. Yamashita, T., Okada, T., Noda, I.: Implementation of simulation environment

for exhaustive analysis of huge-scale pedestrian flow. SICE JCMSI 6(2), 137–146
(2013)

16. Yamashita, T., Soeda, S., Onishi, M., Noda, I.: Development and application of
high-speed evacuation simulator with one-dimensional pedestrian model. J. Inf.
Process. Soc. Jpn. 53(7), 1732–1744 (2012)

17. Yonenoh, H., Izumi, K.: Destabilization effect of var-based risk management on a
multiple-asset market: An artificial market approach. In: 23rd International Sym-
posium on Artificial Life and Robotics (AROB 2018) (2018)

https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1007/978-4-431-55861-3_17
https://doi.org/10.15807/torsj.59.86
https://doi.org/10.15807/torsj.59.86
https://doi.org/10.1007/s40844-015-0020-3
https://doi.org/10.1007/s40844-015-0020-3

Inverse Reinforcement Learning
for Agents Behavior in a Crowd Simulator

Nahum Alvarez(B) and Itsuki Noda

The National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{nahum.alvarez,i.noda}@aist.go.jp

Abstract. Crowd behavior has been subject of study due to its applica-
tions in fields like disaster evacuation, smart town planning and business
strategic placing. However, obtaining patterns from the crowd to make
a working model is difficult, as it requires an enormous quantity of data
from observation and analysis and is impractical in many scenarios due
to logistic and legal issues. Machine learning techniques are a good tool
to overcome these difficulties, using a relatively small training data set
to identify patterns, allowing crowd agents to react to similar situations
accordingly. We implemented a behavioral agent model that uses such
techniques into a large-scale crowd simulator, and apply inverse rein-
forcement learning to adjust agents’ behaviors by examples. The goal of
the system is to provide to the agents a realistic behavior model and
a method to orient themselves without knowing the scenario’s layout,
based in learnt patterns around environment features.

Keywords: Pedestrian simulation · Inverse reinforcement learning ·
Multi-agent systems

1 Introduction

Crowd movement is a topic whose study has a large number of applications
in diverse domains. Naturally, to experimenting or testing scenarios with real
people presents a number of logistic problems and is generally not practical, or
even infeasible in certain instances. Therefore, a widely accepted solution is to
use a simulator to replicate the desired scenario. Then, the simulation can be
used for extracting crowd behavior patterns and predicting its movement. This
could help in improving our understanding of real life tasks like city planning,
disaster prevention, or business strategy. Agent based models are commonly
used to perform the simulations, due to its flexibility and scalability, and allow
to produce complex crowd interactions using simple action patterns. However,
human behavior is a factor difficult to model: people’s actions are goal-driven
but those goals are not usually visible and do not follow optimized plans often.
Also, scalability and performance requirements arise when we need to work in
scenarios involving large numbers of humans, so even basic behaviors pose a
c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 81–95, 2019.
https://doi.org/10.1007/978-3-030-20937-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_6&domain=pdf
http://orcid.org/0000-0003-1717-2506
http://orcid.org/0000-0003-1987-5336
https://doi.org/10.1007/978-3-030-20937-7_6

82 N. Alvarez and I. Noda

challenge to researchers. A possible way to solve this problem is to use machine
learning techniques on available similar data in order to give the agents a way
to react to new situations.

In this paper, we present a model that includes the use of inverse reinforce-
ment learning (IRL from here on) for the agents’ decision making process, train-
ing them with knowledge learnt from previous data. The context of our research
lies in the domain of pedestrian simulation on cities, with the objective of extract-
ing knowledge of the pedestrian flow around concrete points of the map that con-
tain certain features, like shops or restaurants, and predicting which places are
more appropriate for certain business. We aim to deploy a large number of agents
with different profiles depending of their goal (shopping, work, entertainment)
and observe how their behavior is influenced by the features in the environment.
With this information we would be able to decide which spot is best for certain
type of feature and how would change pedestrian affluence if we add new features
or modify the existent ones. This is done by analyzing the crowd movement flow
according of map features and agent characteristics. Previously IRL techniques
has been used to calculate trajectories and plan movements, but as far as we
know its use in agents based simulators or feature map optimization has been
sparse.

We developed a crowd simulator designed to generate pedestrian movement
in city scenarios using real world city maps that originally used simple scripted
agents to calculate trajectories, and we expanded it by adding a behavior module
that works with IRL and is used by the agents to decide which path take. The
decision process is influenced by the preexistent features in the map generating
similar behavior for places with similar features. This module also allows the
agents to traverse maps whose layout is not known. Also, once they have learned
behavior patterns related to the map features, they can be put on a different
map and behave the same way they did in the original scenario.

The rest of the present document is organized as follows: Sect. 2 contains a
review of previous work on reinforcement learning used for agent behavior and
pedestrian simulators and the techniques they use. Section 3 describes in detail
our crowd simulator and its architecture, and Sect. 4 presents our agent model
and the IRL method that generate their behavior. Section 5 contains the tests
we performed to validate the system and the results we obtained from them.
Finally Sect. 6 contains the conclusions of our research.

2 Related Work

Crowd simulation have been recently the object of rising interest because it can
deal with a number of important problems in our society. For example, traffic
simulation can be used to improve transportation systems and networks, and
also in obtaining solutions to lowering car pollution [6]. Pedestrian simulation
is useful to design evacuation strategies and identifying potential problems in
concrete scenarios like natural disasters or terrorist incidents, like [22] or [12]. In
these works we can see that not only an accurate model is needed, but a high

Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 83

degree of scalability is mandatory, as simulating hundred of thousands people
requires many resources in terms of computational power. Different models has
been used to achieve efficient and accurate simulations: for example, [3] shows the
simulation of the crowd flow in a train station during an event using the Cellular
Automata model, or our own system that uses the Social Force model described
in [7]. However, every model has certain limitations, like the Social Force model
having issues representing realistic collision behavior at high densities due to the
specification of the repulsive interaction forces, or the Cellular Automata model
having issues at modeling agents at high or non homogeneous velocities [17].
Solutions of these shortcomings have been proposed by extending the models,
often making them domain-specific to some degree. For example, the Social Force
model was upgraded in [9] to describe detailed velocity control of pedestrians,
and other works like [23] and [11] add a collision-prediction/-avoidance force
model.

There is another topic where pedestrian simulators can be applied, which is
the one we are interested in: city and business location planning. We want to
analyze people movements and behavior in their daily city life, obtaining insight
of what places attract more people and how different types of locations affect
their actions. Then, once we have a model of the patterns that people follow, we
could simulate them in other environments to assess the effectiveness of certain
spots, or predict how a future potential business or facility could perform at
different locations. We are interested in such kind of application and it is the
objective of the present work.

Aiming to that goal, we developed CrowdWalk, a crowd simulator that uses a
multi-agent model to represent pedestrians. Using agents is a popular approach
due to be able of generate complex behavior with simple agent design and also
escalates well, being appropriate for large scenarios. There are a wide range of
works in pedestrian simulation with agents, using different techniques. Systems
based in video analysis work well, like the one in [24], but in order to remain
practical it narrows their domain, using tile location and pre-generated trajec-
tories. Another common strategy is to model the agents with a dual behavior
system controlling two types of movement (or behavior): micro and macro move-
ment. The first deals with collision avoiding in the near space and adjusting the
agent’s velocity in the crowd’s flow, and the second is the one in charge of driving
the agent towards its goal, creating and updating its route and taking care of
the decision making process [21]. Our simulator handles micro movements in an
autonomous way, with its own subsystem where agents adapt to the crowd flow,
and also allows to control macro movements using behavior scripts. To achieve
our goal, we are focused in macro movements as it is the module that creates
the agent’s behavior.

However, a basic action for an agent macro movement like calculating the
most optimal route to a goal in a crowded scenario is a complex task: an a priori
calculated optimal route can become much slower if an enough large number of
agents take it, and this is the simplest problem that could arise; nevertheless, this
is not what we intend as we only aim to replicate pedestrian behavior. Learning

84 N. Alvarez and I. Noda

such behavior patterns is an interesting question: humans usually do not take
the most optimal route, and even congestion can be seen as a positive factor
(“if there are many people, is because is good”) as noted by [4]. In such kind
of domains, we can take advantage of machine learning techniques. Concretely,
apprenticeship learning methods have been widely used in intelligent agents’
systems to train them to perform tasks in changing environments like [18] or [20].
As we noted, simulating people’s behavior and not only trajectory planning is a
difficult task, as their movements are governed by hidden rules and oriented to
goals that may be hidden as well. We can observe strategies to emulate different
behaviors for agents in [6] but it is a static model with pre-designed driving
styles, having the problem of not being able to simulate unplanned behaviors.
There are previous works where agents are given a behavior cognitive model for
pedestrians like in [14,15] or [4], but they are specific to its domain, escalating
badly, or they take as a given the reward or utility functions that drive the agents
behavior, which often is unknown in complex scenarios. Using IRL is appropriate
to overcome this issue, because IRL methods work on domains where the reward
function is hidden. Hence, it is ideal to model animals and humans behavior [16].
Interestingly, the works that use IRL to manage agent’s behavior are sparse,
but are recently some works are starting to use it [19]. IRL not only allows to
train agents into achieving concrete goals, but also can learn different behavior
patterns, as it is shown in [1] where driving styles are learned by an agent. There
are a number of algorithms to solve IRL problems, like the ones in [8] or [10]. We
decided to use the maximum entropy approach [25] because it works well when
we do not have much information about the solution space, as we are dealing
with city scenarios with a layout a priori unknown by the agents. There are
methods that perform better, like [5] which it works on a subset of MDP, but
it does not match well with our domain, or [13] which could be interesting to
apply in future instances of our research.

3 Pedestrian Simulator

CrowdWalk is a pedestrian simulator we developed to perform crowd behavior
prediction in disaster scenarios in order to identify potential bottleneck issues
when coordinating evacuation routes. Aside of this type of scenarios, CrowdWalk
was actually designed for generic uses, so it is possible to create pedestrian
simulation with other purposes. In CrowdWalk, each agent (pedestrian) walks
on a map toward its own goal. It can simulate movements of more than 1 million
agents in a large area like complex building or town blocks in a city. Maps
and agents’ behaviors are configurable so that we can conduct simulations with
various situations of maps and policies of agents. The architecture of CrowdWalk
is depicted in Fig. 1, and shows its principal work modules. We omitted from the
diagram the modules related to the IRL process as in this section we want to
describe in depth the application where we built learning agents on. We will focus
in the IRL process flow and the new agents with detail in the next section. First,
CrowdWalk has two main working modules: an Agent handler and the Simulation

Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 85

Fig. 1. The architecture diagram of CrowdWalk. It has two main modules: one man-
aging the agents and other in charge of the environment simulation. Each one of these
modules is configured by different files containing the specifications of the simulations.
Some of those files can be automatized using the system preprocessing tools to some
extent for easier construction.

manager. The Agent handler contains an agent factory, that generates one agent
per pedestrian. Each agent contains its own decision model that its composed
by the micro and macro behavior modules. The micro behavior module in each
agent takes care of micro movements automatically, calculating when an agent
has to stop, walk slower or even try take other route due to be unable to continue
its original path. However, the final decision of selecting other path is left to the
macro behavior module, and actually, the macro behavior module is able to
override any orders from the micro movements module if deems so. The speed
of an agent is given in relation with the density of the link he is currently in,
being slower as the link is more crowded, until a maximum capacity limit where
it is not possible to continue advancing. Concretely, it is determined according
to the social force model as following:

dvi
dt

= A0 (v∗
i − vi) − A1

∑

j∈Hi

exp (A2 (s − ‖pi − pj‖))

where vi, v∗
i and pi is the current and max speed, and the current location of

agent i, respectively. §Hi is the set of agents located in front of the agent i.
And s is the radius of a personal space. A0, A1 and A2 are constant parameters
whose purpose is to adjust the formula. Through experimental observations in
real scenarios we set these parameters, the personal space radius and the max
speed to a default of A0 = 0.962, A1 = 0.869, A2 = 4.682, v∗

i = 1.023 and

86 N. Alvarez and I. Noda

s = 1.044, however these parameters can be customized in the configuration files
of CrowdWalk.

The macro behavior module is the one in charge of calculating the agent’s
route to its goal, and updating it if necessary. This module contains some pre-
defined behaviors, built using a nested hierarchy where the most basic behavior
consists in an agent that just calculates the shortest path to the goal without
taking in account the degree of agglomeration of each link, and other behaviors
increase in complexity by changing the path if there is too much agent density, or
avoiding roads it used previously. On the top of the most complex class, there is a
special class that enables the agent to be controlled by an external script. Using
this last behavior class, CrowdWalk can use external scripts defining agent’s
macro behavior, allowing more flexibility.

The other important module within the system is the Scenario Engine, which
is the one in charge of actually run the simulation. It receives as input a con-
figuration file containing the scenario information and recreates it as a virtual
environment. Internally, CrowdWalk uses a Network-based model capable of high
speed simulations of large numbers of agents. We simplified the map into a 1-
dimensional network consists of nodes and links instead of 2D free space. Our
main focus is to investigate phenomena and behaviors of a large scale crowd in a
large area, so we need to execute exhaustive simulations with a large number of
configurations. Therefore, we chose a light computational 1D model rather than
a 2D model one. However, it is capable of simulate 3-dimensional structures as
well, being capable of representing the internal layout of a building.

CrowdWalk uses five configuration files to setup simulation environments.
The five files are described as follows:

Properties file: specifies top-level configurations of the simulation. Other
configuration files listed below are specified in this file.
Map file: specifies a map for the simulation.
Generation file: specifies the rules to generate agents. Each generation rule
specify agent classes, other parameters like the max speed and personal space
radius, populations, goals, and generation time independently.
Scenario file: specifies a sequence of events occur during the simulation.
Fallback file: specifies the default values for the simulation parameters, like
the ones in the social force model.

The model of the map consists in a custom xml that describes the map in
the form of a road network represented by nodes (intersections) and links (road
path) composing a graph. A link has a length (how long agents need to walk
from a end to another) and width (how many agents can walk in parallel), and
can be two-way or one-way. Nodes and links can have tags as labels to indicate
goals and other features information, like what kind of facilities are on that
location. The xml model can be created automatically using a tool included in
CrowdWalk that converts maps obtained from the open source software Open
Street Map1 into our custom format. This allows us to use any possible city map
in the world with no additional effort.
1 https://www.openstreetmap.org.

https://www.openstreetmap.org

Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 87

The agent generation script is a file containing the rules of agent generation,
i.e. what number of agents are created, which type of agents will be and if they
are not any default type, which agent behavior file the system will use, which
point they come from, and which point they are going to. CrowdWalk also has
a tool to automatically generate this file by providing some simple rules and the
map model. Finally, the agent behavior is contained in a script and describes
the macro behavior of the agent. This script optional, as there are a number of
predefined agents, like agents that move randomly, or agents that move directly
towards their goal. For our current research we created an IRL agent we will
describe in depth in the next section.

The Agent handler is called by the Simulation manager in order to generate
the agents in the virtual environment following the rules given in the agent
generation script. When running, the simulation engine represents the scenario
as a graphic simulation where the agents will behave according to each one’s
own behavior modules, allowing pausing the simulation at any moment and
inspecting every element part of it (like the current internal state of any agent,
and any node or link).

Once CrowdWalk is running it shows a simulation of the agents traversing
the city map until all the agents reach their goal point; When the agents are
walking freely they are colored green, but when they have to stop or walk slower
they become red, showing bottlenecks in the map. The simulator screen allows
to pause the simulation and examine every agent, map node or link information.
The simulation is run at accelerated time, but it shows the real world time it
is taking given the velocity of the agents. When finished, it records each agent
path in a log with timestamps for posterior replication or analysis purposes.

4 Agent Model

IRL techniques work on domains that can be modeled by a Markov decision pro-
cess (MDP, from here on after) and are used to learn its hidden reward function.
MDP are defined by a tuple M = {S, A, T , γ, r}, where S is the state space
of the model, A is the set of actions that can be performed, T is the transi-
tion function, which returns the probability of transition from one state to other
given a concrete action, and usually is given in the form of a matrix, r is the
reward function that generates a reward value from reaching a state, and γ is a
discount factor, that applies when calculating accumulated reward through con-
secutive actions. When working with models with an unknown reward function,
IRL methods provide us a way to obtain it. In order to get r, it is also provided
a set of expert trajectories T , consisting of “paths” composed of pairs of states
and actions.

We developed an automatic module that converts the city map used in
CrowdWalk into a MDP, ready to be used by our IRL method. This tool trans-
lates map nodes into states, and creates a possible action for each link that it
has. Also, in order to optimize the model, all the nodes that only have two links
are trimmed, as there are no other possible decisions once a pedestrian enter in

88 N. Alvarez and I. Noda

one other than continue walking or going back. Once we have the MDP model
for the map, we run the CrowdWalk IRL module, that consists on an instance
of the IRL algorithm, using a modified version of the maximum entropy method
found in [2]. We adapted this module in order to use a variable number of pos-
sible actions on each state, as each map node has a different number of possible
links to take. The input of this module is the MDP representing the current
map, and a file containing the training trajectories we want to train. It is pos-
sible to run this process using trajectories for each available behavior we want
to train, but also we can run it only once training all the behaviors at the same
time. For example, we can train shopping behavior using routes that go to the
shops on the map, preferring shops hubs like malls or shops surrounded by other
entertainment facilities, or business behavior by training the routes that working
people would do, preferring wide avenues over small and crowded streets; we can
do this once per each behavior or put together all of the trajectories and train
them as a whole. The resulting product of the module is a file containing the
optimal policy function derived from the reward function generated by the IRL
algorithm. This policy function takes the form of a lookup table stored in a file,
which will be used by the system’s agents. All of these actions are performed
before the simulation is executed as a pre-processing task. Thus, even if this
pipeline can take a long time depending of the complexity of the map (about
one hour for a map for one Tokyo district, with around 2000 nodes), it does not
represent a big impact in the simulation speed as the policy selection once we
have this file is enough to use it in real time. The process flow once included in
the architecture we explained in the previous section is depicted in Fig. 2.

Fig. 2. The IRL process integrated in the system. We added two extra modules to the
system in order to create a MDP based in the simulated scenario and train the agents
with expert trajectories. This pipeline integrates naturally with the architecture of the
system.

Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 89

As we described in the previous section, when a simulation runs in Crowd-
Walk, the agents have a macro behavior module which is in charge of the decision
making process by selecting a type of behavior for the agents. We developed a
type of agent, called IRL agent, that works with an input behavior script and
the IRL’s resulting policy and decides which link to take on the probabilities
contained in it. The behavior script contains a list of goals, which describes the
features the agent wants to visit. They can be generic (like “visiting three restau-
rants”) or a concrete one (like “visiting the restaurant located in the node labeled
as nd00327”). Each goal in the list also contains the conditions for its satisfac-
tion, which can be reaching the goal, staying in the goal a defined time, reaching
a number of goals of that type (in case of the generic goal), or a combination of
them. Also, the script contains an evacuation point, where the agent will go after
completing its goals. The agent has access to the optimal policy learned from
the IRL process (stored as a lookup table), and also the set of rules contained in
its behavior script, whose decision making process is shown in Fig. 3. The agent
starts in an state called “wandering”. In this state, on each map node, the agent
obtains from the policy table a list containing the probabilities of taking each
one of the available links on that node. Then the agent chooses which path it
will take based on that probability list. Whenever the agent visits a goal node it
checks and updates its satisfaction conditions. If that goal is satisfied, the agent
enter briefly into another state, called “pathfinder”, which makes it go to its next
goal using the most optimal path. However, it leaves this state as soon as it has
left the featured area containing the previous goal, and returns to “wandering”.
The agents decide they left the area of a goal by have a distance threshold from
the goal they are leaving.

The rationale behind the pathfinder state is to avoid returning to the pre-
viously visited nodes (on a side note, goals already visited do not count when
returning to them), as the nearly policies would drive back the agent to them.
Currently this is controlled by the distance threshold, but in future installments
of the system we will use multiple policy functions with a smart selection method
between them. Once all the goals have been completed, the agent enters again in
“pathfinder” mode and goes straightly to its evacuation point, leaving the map.

5 Preliminary Validation

We performed a preliminary set of tests to validate two aspects of our method:
first, if the intended behavior is observed in the agents, and how the policy and
reward values are distributed on a featured map, and second, that the agents are
capable to reach their goal points. Additionally, we aimed to identify unpredicted
issues and deviations from our expectations.

First, we selected a map from a portion of Tokyo containing commercial
areas, touristic spots, a train station, and residential zones. In the map there
were a total of 36 features, which we classified in three groups: shops, restaurants
or entertainment. We generated by hand 3000 routes representing pedestrians
making errands (we observed in previous tests that training that number of

90 N. Alvarez and I. Noda

Fig. 3. The algorithm followed by the IRL agents: once they reach a map node, they
use the optimal policy function to choose the next node they will go to. If they satisfy
a goal, they leave the area and start wandering again. Also they check their list of goals
and leave the map when all of them were visited.

sample routes results in a better performance than using bigger data sets). The
routes start on 20 random points in the map, covering a 60% of it (a bit more,
they cover 165 nodes from 273) and evacuate on a designated area. We are aware
that for a complete validation we will need to use trajectory data from real
humans. However, we are expecting to obtain a data set containing pedestrian
behavior from other domains, like a department store or a fireworks festival, so
we will adapt our simulator to represent these new environments and perform
more definitive tests.

We prepared two different maps for training the routes: one was designed
to train only shopping patterns; i.e. we deleted from the map any feature not
classified as shop. The second map was prepared using the original, containing all
three groups of features. We trained the routes in these two maps, and generated
two different optimal policy files. Figure 4 depicts how the rewards influence in
the map. Links in red have a probability greater than 80% to be selected as the
next path, in yellow when is between 40% and 80%, and in green when it is lower
than 40% but greater than 20%. As we can see in the figure, training with three
groups of features generates new colored links but also increases the probability
of taking the links in areas where different features are contained. We want to
note that colored links appear over the whole map, and not only in the areas
where routes were trained.

Then, we performed three different sets of simulations using 3000, 6000 and
10000 IRL agents with the two different policy files. The agents start from 20
different random points and have a goal of visit 4 featured spots. Also, in order
to compare the agents behavior, we performed a parallel simulation using other
type of agent called “pathfinder agent”, capable of calculate optimal routes and
going directly to its goals (so it is always in the pathfinder state), as we wanted to

Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 91

compare our theoretically more realistic behavior with an agent capable of reach-
ing scripted route points. We designed routes for these agents placing waypoints
on certain featured areas (but not in feature spots); the agents are programmed
to walk to those points in order and then evacuate at the final point.

Fig. 4. The rewarded links in the map when training with one and three different types
of features. The links are colored depending of their reward value, with no coloring in
case of no reward, green if there is a low reward, yellow if it is moderate and red for
high rewards. (Color figure online)

All the simulations showed similar results in terms of population in featured
areas and number of features visited. In Fig. 5 we can observe the distribution
of the pedestrians in the simulation of 6000 agents with only one feature group
trained. The pathfinder agents crowd around the waypoints, but since they are
programmed to only follow the best path, they avoid other similar featured areas
that are not part of it. They also concentrate in other areas that do not contain
such features, but are just the optimal path to the goal (for example, the big
avenue that runs vertically across the map, which is a navigational hub). On the
other hand, IRL agents tend to disperse themselves when they are not in featured
areas. Figure 6 shows a caption of the simulation with the three types of featured
areas marked with different colors. IRL agents populate almost all of the featured
areas, but as the agents have a much more varied featured-driven behavior, the
crowd in some of them is not as clear-cut as the in the first experiment.

We also extracted population density data from our tests with the full fea-
tures in the map. The IRL agents visited all the 36 featured nodes in the map,
with an average of 7.11 featured spots, whilst the pathfinder agents visited an
average of 2.23, leaving 9 nodes that were untouched by them. Naturally, the
pathfinder agents only went to the featured nodes that were by chance in their
path to the goal, but, interestingly this means that not all business are in the
most optimal paths and agents that does not take in account behavioral pat-
terns, will ignore places that may be important. Finally, we observed space to

92 N. Alvarez and I. Noda

Fig. 5. Comparison between the simulations with one feature trained, both of them
with 6000 agents. Featured areas are marked in yellow. (Color figure online)

Fig. 6. Comparison between the behavior of the agents used in a simulation with the
three groups of features trained, both of them with 6000 agents. The colors used mark
different areas: yellow for shops, blue for restaurants, and green for entertainment.
(Color figure online)

improvement, identifying a number of issues in the IRL agents. First, we noticed
deadlocks emerging when there are a high number of agents, and we plan to solve
that problem in the next version of the system; however, the deadlocks appear
much more often using pathfinder agents. We will add reactive behavior to the
agents in order make them able to detect when they cannot continue their path
and even warn other agents of it.

Also, we think we could improve the agents behavior when shifting between
behavior patterns, because currently switching behaviors is predefined and we
think that is more a way to circumvent the fact that the agents still do not
switch policy functions (and even it may not be suitable to real situations). We
plan to perform an additional layer of learning to obtain a cognitive model for
changing behaviors from the data used for training, and then we can manage

Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 93

different policies for different behaviors. Once we finish this behavior manage-
ment method, we will test if its better to have one unique policy and reward
functions for multiple trained behaviors, or to maintain one per behavior, shift-
ing the policy depending of the goal.

6 Conclusions

In this paper we presented an agent-based pedestrian simulator that uses
inverse reinforcement learning in order to imitate behavior patterns learned from
expert’s trajectories. Current pedestrian or crowd simulators rarely use this app-
roach in order to simulate the crowd behavior, preferring to use this method for
optimal trajectory generation instead. However, such kind of system would have
a wide array of applications in fields: for example it can be used for smart
city planning by extracting the movement patterns of pedestrians and applying
those patterns to create optimal paths to key areas; it can be used for disaster
prevention by identifying which areas are more likely to create bottlenecks in
evacuations, and avoid undesirable paths that would be nonetheless taken by
fleeing pedestrians; it also can be applied to take business strategy decisions in
where to place certain types of business by predicting how they can perform in
attracting customers depending of their surrounding features.

We developed a module that provides behavioral learning to the agents in
our crowd simulator. This module works using an inverse reinforcement learning
technique by converting the domain of pedestrians walking across a city into
a Markov decision process. We performed two sets of experiments obtaining
promising results when replicating the intended behavior. Our IRL agents visit
spots in the map that are ignored by agents that only calculate the most optimal
route to the goal, generating better behavior. Also, by observing the reward
values of the links on the map we can detect which places are more optimal for
certain business. We observed interesting aspects in our tests. First, when the
number of agents increase, pedestrian congestion was much more common with
pathfinder agents than using the IRL agents, hindering their performance or even
generating deadlocks at certain junctions. This is mostly due to the wandering
nature of the IRL agents around zones that match their behavior pattern but are
not part of optimal paths. We also observed that IRL agents have a consistent
behavior independently of the number of simulated agents.

In the next steps of our research, we plan to improve the agents with further
machine learning techniques, in order to teach them when to switch between
different behavior patterns. We also plan to validate the behavior of our agents
by comparing them with live data from real pedestrians. In order to do this and
due to difficulties to track effectively massive numbers of people, we will apply
our system to concrete environments more manageable, like crowd movement in
controlled events or customer behavior inside of supermarkets. We think IRL
techniques opened an interesting path that was not enough explored although
they are well known from long ago, maybe because a lack of simulation technol-
ogy. Thus, we aim to provide better understanding of crowd simulation using
IRL and usable tools for its potential applications.

94 N. Alvarez and I. Noda

References

1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning.
In: Proceedings of the Twenty-First International Conference on Machine Learning,
p. 1. ACM (2004)

2. Alger, M.: Deep inverse reinforcement learning (2015)
3. Crociani, L., Lämmel, G., Vizzari, G.: Multi-scale simulation for crowd manage-

ment: a case study in an urban scenario. In: Osman, N., Sierra, C. (eds.) AAMAS
2016. LNCS (LNAI), vol. 10002, pp. 147–162. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46882-2 9

4. Crociani, L., Vizzari, G., Yanagisawa, D., Nishinari, K., Bandini, S.: Route choice
in pedestrian simulation: design and evaluation of a model based on empirical
observations. Intell. Artif. 10(2), 163–182 (2016)

5. Dvijotham, K., Todorov, E.: Inverse optimal control with linearly-solvable MDPs.
In: Proceedings of the 27th International Conference on Machine Learning (ICML
2010), pp. 335–342 (2010)

6. Faccin, J., Nunes, I., Bazzan, A.: Understanding the behaviour of learning-based
BDI agents in the Braess’ paradox. In: Berndt, J.O., Petta, P., Unland, R. (eds.)
MATES 2017. LNCS (LNAI), vol. 10413, pp. 187–204. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-64798-2 12

7. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E
51(5), 4282–4286 (1995)

8. Herman, M., Gindele, T., Wagner, J., Schmitt, F., Quignon, C., Burgard, W.:
Learning high-level navigation strategies via inverse reinforcement learning: a com-
parative analysis. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol. 9992,
pp. 525–534. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50127-
7 45

9. Johansson, A., Helbing, D., Shukla, P.K.: Specification of the social force pedestrian
model by evolutionary adjustment to video tracking data. Adv. Complex Syst.
10(2), 271–288 (2007). https://doi.org/10.1142/S0219525907001355

10. Kohjima, M., Matsubayashi, T., Sawada, H.: What-if prediction via inverse rein-
forcement learning. In: Proceedings of the Thirtieth International Florida Arti-
ficial Intelligence Research Society Conference, FLAIRS 2017, Marco Island,
Florida, USA, 22–24 May 2017, pp. 74–79 (2017). https://aaai.org/ocs/index.php/
FLAIRS/FLAIRS17/paper/view/15503

11. Lämmel, G., Plaue, M.: Getting out of the way: collision-avoiding pedestrian mod-
els compared to the RealWorld. In: Weidmann, U., Kirsch, U., Schreckenberg, M.
(eds.) Pedestrian and Evacuation Dynamics 2012, pp. 1275–1289. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-02447-9 105

12. Lämmel, G., Grether, D., Nagel, K.: The representation and implementation
of time-dependent inundation in large-scale microscopic evacuation simulations.
Transp. Res. Part C Emerg. Technol. 18(1), 84–98 (2010)

13. Levine, S., Popovic, Z., Koltun, V.: Nonlinear inverse reinforcement learning with
Gaussian processes. In: Advances in Neural Information Processing Systems, pp.
19–27 (2011)

14. Luo, L., et al.: Agent-based human behavior modeling for crowd simulation. Com-
put. Animat. Virtual Worlds 19(3–4), 271–281 (2008)

15. Martinez-Gil, F., Lozano, M., Fernández, F.: Emergent behaviors and scalability for
multi-agent reinforcement learning-based pedestrian models. Simul. Model. Pract.
Theory 74, 117–133 (2017)

https://doi.org/10.1007/978-3-319-46882-2_9
https://doi.org/10.1007/978-3-319-46882-2_9
https://doi.org/10.1007/978-3-319-64798-2_12
https://doi.org/10.1007/978-3-319-50127-7_45
https://doi.org/10.1007/978-3-319-50127-7_45
https://doi.org/10.1142/S0219525907001355
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15503
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15503
https://doi.org/10.1007/978-3-319-02447-9_105

Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator 95

16. Ng, A.Y., Russell, S.J., et al.: Algorithms for inverse reinforcement learning. In:
ICML, pp. 663–670 (2000)

17. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.:
Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R.
(ed.) Extreme Environmental Events, pp. 517–550. Springer, New York (2011).
https://doi.org/10.1007/978-1-4419-7695-6 29

18. de Albuquerque Siebra, C., Botelho Neto, G.P.: Evolving the behavior of
autonomous agents in strategic combat scenarios via sarsa reinforcement learning.
In: Proceedings of the 2014 Brazilian Symposium on Computer Games and Dig-
ital Entertainment, SBGAMES 2014, Washington, DC, USA, pp. 115–122. IEEE
Computer Society (2014). https://doi.org/10.1109/SBGAMES.2014.36

19. Šošić, A., KhudaBukhsh, W.R., Zoubir, A.M., Koeppl, H.: Inverse reinforcement
learning in swarm systems. In: Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, pp. 1413–1421. International Foundation for
Autonomous Agents and Multiagent Systems (2017)

20. Svetlik, M., Leonetti, M., Sinapov, J., Shah, R., Walker, N., Stone, P.: Automatic
curriculum graph generation for reinforcement learning agents, November 2016.
http://eprints.whiterose.ac.uk/108931/

21. Torrens, P.M., Nara, A., Li, X., Zhu, H., Griffin, W.A., Brown, S.B.: An extensible
simulation environment and movement metrics for testing walking behavior in
agent-based models. Comput. Environ. Urban Syst. 36(1), 1–17 (2012)

22. Yamashita, T., Soeda, S., Noda, I.: Evacuation planning assist system with network
model-based pedestrian simulator. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri,
P. (eds.) PRIMA 2009. LNCS (LNAI), vol. 5925, pp. 649–656. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-11161-7 52

23. Zanlungo, F., Ikeda, T., Kanda, T.: Social force model with explicit collision pre-
diction. EPL (Europhys. Lett.) 93(6), 68005 (2011)

24. Zhong, J., Cai, W., Luo, L., Zhao, M.: Learning behavior patterns from video
for agent-based crowd modeling and simulation. Auton. Agents Multi-Agent Syst.
30(5), 990–1019 (2016)

25. Ziebart, B.D., Maas, A.L., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse
reinforcement learning. In: AAAI, Chicago, IL, USA, vol. 8, pp. 1433–1438 (2008)

https://doi.org/10.1007/978-1-4419-7695-6_29
https://doi.org/10.1109/SBGAMES.2014.36
http://eprints.whiterose.ac.uk/108931/
https://doi.org/10.1007/978-3-642-11161-7_52

FARM: Architecture for Distributed
Agent-Based Social Simulations

Jim Blythe(B) and Alexey Tregubov(B)

Information Sciences Institute, Marina del Rey, CA 90292, USA
blythe@isi.edu, tregubov@usc.edu

Abstract. In many domains, high-resolution agent-based simulations
require experiments with a large number (tens or hundreds of millions) of
computationally complex agents. Such large-scale experiments are usu-
ally run for efficiency on high-performance computers or clusters, and
therefore agent-based simulation frameworks must support parallel dis-
tributed computations. The development of experiments with a large
number of interconnected agents and a shared environment running in
parallel on multiple compute nodes is especially challenging because it
introduces the overhead of cross-process communications.

In this paper we discuss the parallel distributed architecture of the
farm agent-based simulation framework for social network simulations.
To address the issue of shared environment synchronization we used
a hybrid approach that distributes the simulation environment across
compute nodes and keeps the shared portions of the environment syn-
chronized via centralized memory storage. To minimize cross-process
communication overhead, we allocate agents to processes via a graph
partitioning algorithm that minimizes edge cuts in the communication
graph, estimated in our domain by empirical data of past agent activi-
ties. The implementation of the toolkit used off the shelf components to
support centralized storage and messaging/notification services.

This architecture was used in a large-scale Github simulation with
up to ten million agents. In experiments in this domain, the graph par-
titioning algorithm cut overall runtime by 67% on average.

Keywords: Agent-based modeling and simulation ·
Parallel distributed simulation · Large-scale simulation ·
Parallel distributed computing

1 Introduction

The development of large-scale agent-based simulations for social science can
require significant computational resources. In order to simulate social networks
such as Facebook, Twitter or Github with high resolution, including models of
individual users, one may need to simulate hundreds of millions of agents. Each
agent may have a complex behaviour model that requires a significant amount of
information from the environment. A large number of complex agents exchanging
c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 96–107, 2019.
https://doi.org/10.1007/978-3-030-20937-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-20937-7_7

FARM: Architecture for Distributed Agent-Based Social Simulations 97

information with the shared environment inevitably consumes a large amount of
computational power.

The efficient simulation of large models often requires more computational
resources than are available to the researcher on one machine. Therefore, it
is often necessary to utilize resources of high performance super computers or
clusters. Clusters require parallel computations. There are two main technical
reasons to use clusters of computers and parallel computations: (1) to make
simulations run faster and (2) to overcome the memory limitations of a single
machine. Running an agent-based simulation on such platforms requires support
of parallel computations in the architecture of the simulation framework. In this
paper, we present farm, a distributed parallel agent simulation architecture
with centralized storage and messaging services. farm’s distributed architecture
was designed to addresses parallel simulation challenges such as a synchronized
shared environment and cross-process communication overhead. As part of its
solution, farm uses a combination of centralized and distributed storage. Cen-
tralized storage is used for portions of the environment that must be shared by
agents on different compute nodes, and the local memory of a node is used in all
other cases. Since communication between compute nodes (cross-process com-
munication) uses the network, it significantly slows the overall simulation time.
We discuss methods, including graph-based agent partitioning and smart lazy
communication, to minimize cross-process communication to reduce simulation
runtime and increase the size of simulations that can be run in practice.

farm has been used to run simulations approaching 10 million agents on 10
nodes with 16 GB RAM, or on 4 nodes with 64 GB RAM, simulating 30 million
events in approximately one hour of real time. The novel contributions of farm
include (1) explicit reasoning about centralized and distributed storage at run
time and (2) graph-based partitioning of agents between compute nodes based
on empirical communication data. farm’s distributed parallel architecture was
utilized to overcome memory limitation of compute nodes at expense of cross-
process communication overhead. The impact of cross-process communication
overhead was reduced by optimized graph-based partitioning of agents between
compute nodes.

We present empirical results from a simulation of millions of Github user
agents on the performance of the partitioning algorithm. In our experiments, the
algorithm cuts overall runtime by around 67% on average and cuts the amount
of cross-process communication required by 70%. We conclude with a discussion
of next steps to further improve performance at very large scale, enabling high-
fidelity agent simulations to be applied to city-scale or nation-scale domains.

2 Related Work

Two types of parallel processing are described in the agent-based simulation lit-
erature: (1) simulations that run a large a number of experiment trials in parallel
and (2) simulations that run one large computationally complex experiment trial
in parallel on several compute nodes. Many distributed parallel agent-based sim-
ulations were originally developed using the first approach [3,4,10]. However, in

98 J. Blythe and A. Tregubov

such domains as transportation, where a large number of active agents is neces-
sary in each experiment run, the resources of one computer are often not enough
even for one trial of the experiment. For example, to simulate air traffic over
the US models need to handle more than 40000 flights [12]. In such simulations,
agents usually follow some simple rules to model physical interactions of the real
world, and experiments often need hundreds of thousands of them.

The development of parallel distributed simulations, exploiting the power of
parallel computation, has been used to approach scalability of multi-agent simu-
lations [4]. In the distributed simulation models described in [5,11,12] agents are
partitioned by geographical location where partitions allowed concurrent execu-
tion. When agents move due to their actions from one region to another they
are reallocated to a process corresponding to a new region or partition of the
environment. For example, Šǐslák et al. [11] proposed an architecture for dis-
tributed parallel simulation of air traffic control using the locality of interactions
among agents and the environment to distribute agents across several comput-
ers. General purpose agent-based simulation frameworks also heavily rely on
the locality of agent interactions with their environments (e.g. the agent only
partially observes the environment). For instance, in Repast the grid-locality
of communications with the environment is a part of the framework for par-
allel simulations [4]. This principle of distributing agents across compute nodes
according to their location and sphere of influence is common among agent-based
simulations in social, economic and climate studies [6,10].

Compared with transportation or economic domains, simulations of social
networks with high resolution may require an even larger number of agents.
Social networks such as Facebook and Twitter have hundreds of millions of
monthly active users. Additionally, communication among social network users
is often not bounded by geographical location, and so partitioning agents and the
environment in distributed parallel simulations also requires a different approach.
In Github simulation experiments, discussed in the following sections, we applied
graph-based partitioning of agents between compute nodes based on empirical
communication data.

3 FARM Distributed Simulation Architecture

farm supports distributing agent simulations across multiple compute hosts in
parallel to enable large-scale multi-agent simulations. It supports two cases of
distributed processing for multi-agent simulations: one case in which a single
simulation is distributed across multiple compute nodes, and one in which an
experiment consists of many repeated trials, each a separate simulation, which
are distributed across multiple compute nodes. Each compute node is an inde-
pendent process running on its own host. farm includes support for explicitly
representing experiments consisting of multiple trials, iterating over the set of
independent variables, in support of a hypothesis. However, in this paper we
focus on support for a single simulation distributed across multiple hosts, since
the trials within an experiment are independent of each other, and hence simpler
to allocate from a computational standpoint.

FARM: Architecture for Distributed Agent-Based Social Simulations 99

farm is implemented in Python and designed to support simulations involv-
ing dash agents. dash is a platform for developing cognitive agents, also written
in Python [2]. During a simulation, dash agents can either affect each other
directly, through peer-to-peer communication, or indirectly through one altering
some part of the shared state that the other perceives. This indirect commu-
nication is moderated through a dash communication hub, that receives infor-
mation from agents about actions that were taken and passes back the observ-
able results of the action, while modeling the world state within the simulation.
However, farm can be used with simulations involving other kinds of agent
representations.

We assume that each compute host will run many agents within the simu-
lation in a single image, with inter-agent communication between agents on the
same compute host supported efficiently by shared memory within the image.
farm utilizes centralized storage and messaging service to synchronize the envi-
ronment that agents share in simulation. farm provides tools for automated
management of simulation parameters and allows the researcher to control exper-
iment setup.

Figure 1 shows the distributed architecture of farm and how its components
are allocated across multiple compute nodes. Each compute node runs a process,
called dash Worker, that runs a subset of agents and maintains a synchronized
view of the part of the simulation environment that must be shared between
nodes.

On each dash Worker, the part of the state that is used by only agents
on that dash Worker is kept locally, while the rest is shared, and maintained
via an in-memory database. Information about the state updates is distributed
via messaging services. farm uses Apache ZooKeeper [1] to provide a fast in-
memory database for small transactions and messaging/notification services for
task distribution and synchronization.

farm uses the dash agent-based simulation framework, where dash agents
communicate with each other and interact with their shared environment via
communication hubs. dash communication hubs accept action specifications
from agents and return their observable effects, while maintaining the shared
state of the environment as a result of these actions. Each compute node has
at least one communication hub. Communication hubs synchronize their por-
tion of the environment with other hubs in the network as needed via Apache
ZooKeeper.

Typically the environment represents some shared resources of the simula-
tion (e.g. posts, pages, pictures on social networks, source code repositories on
Github, etc.). farm distributes agents and environment resources (via commu-
nication hubs) across multiple compute nodes. Communication between agents
and shared resources of the environment can therefore be viewed as an agent-
to-resource graph. For example, in the Github experiment, discussed below, the
shared environment consists of software repositories that agents observe and
contribute to, and the agent-to-resource graph is then a user-to-repository com-
munication graph (labeled as U-R graph in figures). This is a bipartite graph

100 J. Blythe and A. Tregubov

Fig. 1. The farm distributed simulation architecture.

of agents and shared resources; two vertices in the graph are connected when
agents access the shared resource. Frequencies of interaction between agents and
shared resources can be used as weights in the graph.

The agent-to-resource graph is partitioned when agents are allocated to com-
pute nodes. Cross-process communication in the simulation then corresponds to
the case where two agents allocated to different compute nodes access the same
resource. If information about expected agent communication is available, it
can be used to partition an agent-to-resource graph in a way that reduces this
cross-process communication during simulations. Past communication history
between agents and the environment can be used to build an agent-to-resource
graph. Graph partitioning algorithms that reduce the total flow across edge cuts
can then be used to partition the agent-to-resource graph and find an efficient
allocation of agents to compute nodes.

FARM: Architecture for Distributed Agent-Based Social Simulations 101

In farm we utilized a k-way graph partitioning algorithms implemented in
METIS [8,9]. METIS uses multilevel partitioning algorithms that reduce the size
of the graph by collapsing vertices and edges, partition the smaller graph, and
then uncoarsen it to construct a partition for the original graph. METIS utilizes
novel algorithms developed by Karypis and Kumar [8,9]. These algorithms allow
parallel work on large graphs as well as multi-constraint partitioning.

4 Github Simulation and Experiment Setup

In this section we discuss a Github simulation model (shown in Fig. 2), which
was implemented using the distributed architecture presented above. Github
[7] is a hosting platform for software repositories using the git version control
software, that provides additional features such as wikis. Github is an example of
a social network where users can comment on commits, make pull requests, fork
repositories, create branches, etc. There are several dozens of millions of users
and repositories on Github. Our Github simulation is capable of running several
million agents and repositories simultaneously on multiple compute nodes.

The dash architecture provides the necessary components to model social
networks. In our Github experiment, dash agents represent Github users, and
dash communication hubs model the social network infrastructure. Communi-
cation hubs provide access to a shared state of the environment—the Github
repositories. The state of repositories reflect the history of other users’ actions
on a particular repository, and it can drive next actions of an agent. For example,
if one user submits a pull request, another user may respond to that request by
accepting or rejecting it.

The goal of the Github experiment was to simulate interactions between
agents and repositories. This also allowed us to test the performance of the sim-
ulation framework in different configurations—using different agent partitioning
techniques and different number of compute nodes in different trials.

We measured the overall simulation runtime and the number of cross-process
communications, which is the number of times compute nodes synchronized the
state of their repositories.

In this experiment an agent-to-resource graph is called user-to-repository
graph. To compare the quality of an user-to-repository graph partitioning tech-
niques, we measured the number of edge cuts in the partitioned graph. The
number of graph partitions is the same as the number of compute nodes in this
experiment.

We compared two partitioning algorithms: random user-to-node allocation
and multilevel k-way graph partitioning using the METIS library [8,9]. In ran-
dom user-to-node allocation, the number of users per node was balanced, and all
repositories that are only accessed by one user were allocated to the same node
as the user. This means that only repositories that are accessed by two or more
users could belong to edge cuts.

We used all user activities on Github for one month as a training dataset,
modeling the actions taken such as forking a repository or committing code,

102 J. Blythe and A. Tregubov

Fig. 2. The distributed Github simulation allocates each agent to a single compute
node. Repositories are modeled locally if they affect only agents from one compute
node, otherwise they are replicated.

but not storing the content of the code that was committed. This provided the
initial state of the simulation with 1.8 million users and 3.2 million repositories.
We chose this size of the initial state as a realistic representation of the scale
required to model active users and repositories on Github over a reasonable
time period. The simulation ran on a cluster of 18 compute nodes, each with
16 GB of RAM and 4 core CPUs. However, in order to measure cross-process
communication overhead in multiple trials, we designed a reduced model with
simplified agents so that the entire simulation could fit into 16 GB of RAM on
one compute node. These simplified agents did not use the cognitive modeling
capabilities that are available in dash and had a relatively restricted memory of
their history of Github activity.

FARM: Architecture for Distributed Agent-Based Social Simulations 103

We also ran trials in which the state of the repositories shared between parti-
tions was not synchronized (labeled as ‘no sync’) to measure results without the
cross-process communication overhead. These simulations were, of course, incor-
rect, but they enabled us to measure task allocation and aggregation separately
from the cross-process repository communication.

5 Results

Figure 3 shows simulation runtime of all 36 trials. In most of the trials, METIS
user-to-repository graph partitioning ran more than three times faster than
random partitioning. METIS user-to-repository graph partitioning algorithm
allowed 3% load imbalance and was configured to minimize the number of edge
cuts. It is important to note that minimizing edge cuts in user-to-repository
graph is an approximation to minimizing the number of repositories shared
between several partitions.

Fig. 3. Simulation runtime with different partitioning algorithms. In order to test
results with fewer nodes, simplified agents have been used that can fit in 16 GB of
RAM on a single machine. In more faithful experiments, a cluster of 18 nodes was
used.

Runtime decreases with the number of available computation nodes. How-
ever, due to cross-process communication overhead, the runtime of trials with
several compute nodes is always significantly higher (10–20 times) than the run-
time of a trial running one just one node. In general, it is not always feasible
to fit the whole simulation model and all its agents in one compute node. More

104 J. Blythe and A. Tregubov

complex agent behavior requires more computational time and memory, which
may not be available on one machine.

Figure 4 shows the number of cross-process communications in trials with
a varying number of compute nodes. We can see that cross-process commu-
nication with random partitioning increases only by 5% when the number of
compute nodes goes from 2 to 12 nodes. For METIS k-way graph partitioning
it increases by 48%, and it remains mostly the same when more than 9 nodes
used. This means that after some number of nodes the number of cross-process
communications does not increase.

On average, in our domain, cross-process communications constituted 31%
of user to repository interaction under a random user allocation, and 9% under
user allocation that used METIS k-way graph partitioning.

Fig. 4. Total number of cross-process communications in the simulation.

Figure 5 shows the number of edge cuts produced by partitioning. We tested
user-to-repository graph partitioning while varying the number of partitions from
2 to 18. Random partitioning produces almost the same number of edge cuts
regardless of the number of partitions, whereas for METIS k-way graph par-
titioning, the number of edge cuts levels off after 10 partitions. In all cases,
the METIS k-way graph partitioning produces at least three times fewer edge
cuts. This is consistent with the runtime, since the number of edge cuts directly
impacts the amount of cross-process communication and runtime.

FARM: Architecture for Distributed Agent-Based Social Simulations 105

Fig. 5. Total number of repositories that belongs to more than one partition (edge
cuts). METIS multilevel k-way graph partitioning and random partitioning.

6 Discussion

One of the main difficulties of distributed parallel simulations is maintaining
shared state synchronization, which requires cross-process communication. The
amount of cross-process communication significantly slows down the overall sim-
ulation runtime. Partitioning of the agent communication graph can significantly
reduce the amount of cross-process communications and runtime.

In this research we conducted experiments using the distributed farm archi-
tecture with a hybrid of centralized and distributed storage for shared state
synchronization. We measured performance of different agent-to-node allocation
strategies. In our Github simulation experiment, the METIS multilevel k-way
graph partitioning reduced the number of cross-process communications and
runtime more than three times compare to a balanced random agent-to-node
allocation.

This distributed architecture is applicable for different domains. In the
Github experiment we used the history of user-repository interactions to allocate
agents to compute nodes. Different domains might use different agent partition-
ing techniques, for example, the geographical location of agents. If the simulation
model allows identifying highly interconnected clusters of agents that mostly
share only some small portion of the environment (e.g. in Github experiment it
is a group of users that mostly only work their own repositories), then the hybrid
storage architecture of dash can take advantage of this to reduce cross-process
communications and runtime.

106 J. Blythe and A. Tregubov

Since network communication between nodes is the biggest contributing fac-
tor to simulation runtime, it might be reasonable to sacrifice some partition
size balancing to reduce cross-process communication. In our experiments, the
user-to-repository communication graph was partitioned by the METIS k-way
partitioning algorithm with only 3% of partition size imbalance allowed. We plan
to explore the trade-off between partition size balancing and amount of cross-
process communications in the future experiments. Additionally, since agents
(e.g. Github users) and shared resources of the environment (e.g Github reposi-
tories) will typically require different amount of memory, it is also worth experi-
menting with balancing the numbers of agents and shared resources of the envi-
ronment separately.

In this work, we did not consider dynamic reallocation of agents although this
is common in other domains, particularly where allocation is location-based and
agents move. An equivalent reallocation might be made in simulations of social
networks when an agent changes the mix of communications, e.g. message boards
or repositories, over time so that more communication is now with another host
than with the host where the agent resides. Rules for such reallocation are more
complex than in the case of location-based agents, however, and the benefits not
always as clear.

There are benefits and limitations to the centralized storage architecture that
we have discussed. Compared to fully distributed peer-to-peer communication
the centralized storage and messaging service are conceptually easier to use and
maintain when a distributed simulation model is being developed. Additionally,
there are many off-the-shelf components available to make the implementation
efficient. Large-scale simulations also require a very high throughput from the
database and messaging service, which can make them a bottleneck. Apache
ZooKeeper allows distributed installations and also supports local caching and
delayed/lazy synchronization transparent for the simulation model, which can
be used to fine-tune the simulation performance.

In large-scale simulations with several million agents running on multiple
nodes, it is likely to find clusters of agents that share a similar or identical
internal state. In such cases, it may be possible to compress the representation of
the internal state of these agents to make the simulation more memory efficient.
This in turn allows more agents to be allocated to the same node, which can
reduce the total number of compute nodes and cross-process communications.
We are currently exploring performance optimization such as these in farm.

Acknowledgment. This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) and the Army Research Office (ARO)
under Contract No. W911NF-17-C-0094. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not nec-
essarily reflect the views of the Defense Advanced Research Projects Agency (DARPA)
and the Army Research Office (ARO).

FARM: Architecture for Distributed Agent-Based Social Simulations 107

References

1. Apache: Apache zookeeper (2018). https://zookeeper.apache.org
2. Blythe, J.: A dual-process cognitive model for testing resilient control systems. In:

5th International Symposium on Resilient Control Systems, pp. 8–12, August 2012
3. Chow, K.P., Kwok, Y.K.: On load balancing for distributed multiagent computing.

IEEE Trans. Parallel Distrib. Syst. 13(8), 787–801 (2002)
4. Collier, N., North, M.: Parallel agent-based simulation with repast for high perfor-

mance computing. Simulation 89(10), 1215–1235 (2013)
5. Cosenza, B., Cordasco, G., De Chiara, R., Scarano, V.: Distributed load balancing

for parallel agent-based simulations. In: 2011 19th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing (PDP), pp. 62–69.
IEEE (2011)

6. Deissenberg, C., Van Der Hoog, S., Dawid, H.: EURACE: a massively parallel
agent-based model of the european economy. Appl. Math. Comput. 204(2), 541–
552 (2008)

7. Github: Github software development platform (2018). http://github.com
8. Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph parti-

tioning. In: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing,
pp. 1–13. IEEE Computer Society (1998)

9. Karypis, G., Kumar, V.: Multilevelk-way partitioning scheme for irregular graphs.
J. Parallel Distrib. Comput. 48(1), 96–129 (1998)

10. Scheutz, M., Schermerhorn, P., Connaughton, R., Dingler, A.: SWAGES-an extend-
able distributed experimentation system for large-scale agent-based alife simula-
tions. In: Proceedings of Artificial Life X, pp. 412–419 (2006)

11. Šǐslák, D., Volf, P., Jakob, M., Pěchouček, M.: Distributed platform for large-
scale agent-based simulations. In: Dignum, F., Bradshaw, J., Silverman, B., van
Doesburg, W. (eds.) AGS 2009. LNCS (LNAI), vol. 5920, pp. 16–32. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-11198-3 2

12. Tumer, K., Agogino, A.: Distributed agent-based air traffic flow management. In:
Proceedings of the 6th International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2007, pp. 255:1–255:8. ACM, New York (2007).
https://doi.org/10.1145/1329125.1329434

https://zookeeper.apache.org
http://github.com
https://doi.org/10.1007/978-3-642-11198-3_2
https://doi.org/10.1145/1329125.1329434

Applications of Massively Multi-agent
Systems

Diversity in Massively Multi-agent
Systems: Concepts, Implementations,

and Normal Accidents

Philip Feldman1,3 and Antonio Bucchiarone2(B)

1 University of Maryland, Baltimore County, MD, USA
2 Fondazione Bruno Kessler, Trento, Italy

bucchiarone@fbk.eu
3 ASRC Federal, Laurel, MD, USA

Abstract. Coordination for Transportation as a Service (TaaS) can be
implemented on a spectrum, ranging from independent agents communi-
cating exclusively through market exchanges to hybrid market/hierarchy
approaches fixed hierarchical control systems. An overview of each app-
roach is described and a detailed description of recent work in simulating
a hybrid solution is presented. The use of diversity as a potential app-
roach to reduce the impact of catastrophic Normal Accidents is discussed.

Keywords: Diversity · Multi-agent systems ·
Transportation as a Service · Market systems · Hierarchical control ·
Distributed control

1 Introduction

Through most of history, the allocation of transportation resources has not been
an issue. The trouble arose once we started to ride horses, sail boats, ride trains
and travel in cars. Transportation resources can be expensive. In 2016, the aver-
age US consumer spent $8,427 on vehicles [2], or approximately 20% of the
median US household income of $43,290 for that year [3]. Clearly, using trans-
portation services more efficiently can create enormous savings for the individ-
ual, while simultaneously reducing congestion and pollution in areas where these
efficiencies are achieved.

Transportation as a Service (TaaS) is the application of information technol-
ogy to the movement of people at the individual level. Scheduling and allocation
that was previously only cost effective for transportation of users as groups can
now be allocated down to the level of an internet-connected, GPS equipped bicy-
cle or e-scooter. Fifteen years ago, the integration of internet-connected, GPS
equipped trucks disrupted the trucking industry, allowing for the emergence of
markets that allowed individual owner-operators to bid competitively across a
number of freight exchanges [5].

But people are different from cargo. They have agency, and the cost of even
relatively minor errors can be high. They also have requirements that cargo
c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 111–129, 2019.
https://doi.org/10.1007/978-3-030-20937-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-20937-7_8

112 P. Feldman and A. Bucchiarone

doesn’t, like cognitive load and status. How can these transportation needs be
efficiently met? In this paper, we introduce TaaS as a massively multi-agent sys-
tem able to cover a diverse technological spectrum ranging from tightly struc-
tured hierarchies to open markets. We then describe in detail research into a
middle ground consisting of loosely connected ensembles of hierarchies. Lastly,
we discuss some of the implications that can arise from building densely con-
nected, highly responsive transportation networks, particularly with respect to
unanticipated, extreme conditions.

2 The TaaS Spectrum of Coordination

Optimizing transportation isn’t just hard, it’s NP-Hard. As seen with just a
single traveling salesman, the number of paths scales geometrically with the
number of towns to visit. Even such apparently simple transport problems such
as determining the staging and stops for a set of elevators in a skyscraper
remain unsolved, and have recently been analyzed using machine learning
techniques [14]. With distributed systems supporting potentially billions of peo-
ple utilizing millions of devices, a closed form solution is clearly impossible.
Rather, we need to focus on attainable benchmarks to evaluate potential and
actual systems.

Wellman, in his work on market-oriented programming [35] suggests the fol-
lowing criteria for evaluating distributed systems:

– What is the quality of the allocation of resources?
– How computationally intensive is the allocation process?
– How easy is it to design and specify a system?

Since these criteria were developed in 1994, large scale wireless networks have
become a daily reality along with hacking and security breaches. As such, we
suggest adding the following criteria:

– How much bandwidth is needed? Particularly in situations where communi-
cation can be unreliable, the speed and number of bytes needed to achieve a
complete transaction needs to be considered.

– How resilient is the system to unforeseen conditions? Can the system adapt
rapidly and effectively to conditions that significantly disrupt normal trans-
portation patterns, such as evacuations, natural disasters and even wars?

– How secure is the system? Is the system vulnerable as a whole or parts? Can
the system be hacked to the point that a vehicle becomes a danger to its
passengers and others?

With these criteria in mind, we now look to the three main regions that
define this spectrum - market-based, hybrid, and hierarchical.

Diversity in Massively Multi-agent Systems 113

2.1 Market Systems

The Oxford English Dictionary defines “stock exchange” as A market for the
buying and selling of public securities; the place or building where this is done;
an association of brokers and jobbers who transact business in a particular place
or market [1].

Although we could find no online exchanges for TaaS for people, there are
online transportation exchanges for cargo have been in existence for about 20
years, and three particular categories have emerged; clearing houses, auctions,
and freight exchanges [25].

Clearing houses collect the loads posted by the shippers or capacity posted by
carriers. Both parties search for their preferred choice and negotiate one-on-one
for the price of delivery. Lyft, Uber and other transportation network companies
(TNCs) tend to incorporate a private version of this model as private clearing
houses for matching user requests and ride providers.

Auction houses engage both carriers and shippers to sell their capacity or
delivery services at the best price. The auction system has been found to improve
their occupancy rate of transport vehicles while shippers can obtain better rates
under spot market circumstances.

Freight exchanges let shippers post their demands and carriers posts their
capacity in an online marketplace where each of them will be allocated to their
respective services required at a competitive price.

Market systems are generally regarded to be an extremely efficient way to
allocate resources. Agent-based simulation [33] shows that transportation mar-
kets can achieve Pareto equilibrium, where no user can improve their position
without making another agent’s position worse. Markets can be gamed however.
For example, in eBay auctions users tend to pile on bids an the last few sec-
onds of an auction in a process called sniping. This tends to force a lower price,
benefiting the bidder.

The amount of computation scales geometrically with the number of users
and providers. Multiple heuristics can be applied to the data to reduce the
amount of computation. For example, riders and providers that are near enough
to each other need be evaluated. That being said, in dense urban environ-
ments, that could still be a computationally intensive task, where “good enough”
answers would have to be accepted.

Since private clearing houses for TaaS have been deployed, it is clear that
such systems can be built and deployed at scale. Lyft and Uber both offer APIs
for external developers to integrate other products into their respective corpo-
rate ecosystems. This is only front end interaction though. The full stack that
performs global scale interactions clearly depends on hundreds of developers.

Bandwidth for market systems does not need to be large. At a minimum there
needs to be a request by the consumer and a response by the provider. Additional,
market-specific information such as time remaining on an auction adds very little
data to a given payload. No real-time communication is required for the market,
though meeting particular deadlines can be critical. Where bandwidth permits,
companies often provide UIs where real-time information like vehicle location to
the user.

114 P. Feldman and A. Bucchiarone

Security in regulated exchanges such as the New York Stock Exchange seems
surprisingly effective, even though glitches such as Flash Crashes occur [20]. One
reason is that these systems are often on their own networks, and have circuit
breakers that halt all trading. Also, each transaction is directly associated with a
registered user who is financially liable for all transactions. This fiscal obligation
has resulted in massive losses due to software glitches [13], so there is considerable
motivation on the part of traders to self-police.

Markets can adapt quickly to changing conditions as long as the basic frame-
work of the market remains intact. A power failure at a server farm could shut
down a centralized exchange. Another issue is the fundamental nature of a mar-
ket, where prices fluctuate, based on supply and demand. In the case of an
evacuation order, a market-based TaaS could easily favor the rich as the price
for transportation rises inversely with respect to supply. An example of this is
surge pricing, which raises the cost of a ride at times of high demand. A mar-
ket can’t adjust organically to such issues, so specific policies have to be put in
place. For example, Uber put a cap on fares during the evacuation of sections of
Florida prior to the landfall of hurricane Irma [22].

Research Challenges. As stated in the previous section, a private, central
exchange is vulnerable to a sufficiently widespread catastrophe. Distributed,
public exchanges could address this weakness, but building distributed trustwor-
thy systems is difficult. Yuan and Wang develop a blockchain-based mechanism
for intelligent transportation services [37], but there are high computation costs
associated with creating ledgers. Furthermore, blockchain requires all transact-
ing computers to be connected. An orphan network, such as might occur during a
catastrophe would have to halt transactions. Other, tangle-based systems could
be more resilient, and support isolated networks [28]. This would be important
research, because a system that could support isolated markets could support
any technology that can interact with the exchange, for example, the use of
horses could emerge in the case of chronic fuel shortages.

2.2 Hierarchical Control Systems

Hierarchical control predates digital embodiments, with examples as diverse as
companies, armies, and governments. As such, it is an intuitive concept for con-
trol systems that was described in considerable detail by Roth, in 1962 [30]. In
his article, Roth describes the major components, communication requirements,
separation of responsibility, and human integration that are still the basis for
today’s systems.

The National Institute of Standards and Technology has implemented a
framework for large scale real-time control, the NIST Real-time Control (RCS)
Reference Model Architecture [29]. NIST formalized RCS as a standard reference
architecture and implemented this framework across multiple domains, ranging
from vehicle control to robot control to manufacturing.

RCS is based on the concept of hierarchical task decomposition. A compli-
cated task, such as painting a car, can be broken down along levels of abstraction.

Diversity in Massively Multi-agent Systems 115

At the highest level is the overall command paint the next car red. This com-
mand is then broken down into commands that are issued to the subcomponents,
such as the painting robot and the auto body transport elements. At the lowest
levels of abstraction the servos that move the various actuators are controlled.
At the lowest levels of the system, updates rates are thousands of times a second.
At the highest levels updates need only occur every few minutes.

The logic to perform a task is contained in an RCS Controller Module. All
controllers have the same structure:

1. A command buffer, which contains the command (e.g. MOVE TO START),
and a serial number.

2. A response buffer which contains an echo of the command, a status (e.g.
WORKING, DONE, ERROR) and a serial number.

3. A set of command and response buffers for any child controllers.
4. A window to world data, that contains environmental information. Sensors

controlled modules that could be useful to other modules are published here.
5. A preprocess that reads in any parent commands, child responses, and envi-

ronmental data.
6. A decision process, that takes the command and the current state of the

controller and decides what task is active.
7. A collection of finite state machines that perform the amount of the task

within the update rate.
8. A postprocess where responses to the parent, commands to the children, and

any useful sensor data is published.

Modules are connected in a strict hierarchy - no module may have two par-
ents. Because each command has a serial number that is echoed back in the
response, all direct interaction between modules is deterministic, and can tolerate
poor communication - a command can’t be sent until the response echoes back
the serial number. RCS can also be used in simulations. The controllers interact
with a physics based environment that provides enough information for the sen-
sors and actuators to behave within reasonable parameters. Because controllers
contain all process knowledge related to a task at their level of abstraction, com-
munication between controllers is typically minimal. This in turn affords easy
modification and adjustment of the hierarchy, so as a task or technology changes,
only small parts of the running system need to be modified.

Hierarchies do not allocate resources well. The top-down nature of the con-
trol stands in opposition to the bottom-up self organization of market systems.
What this means is that the allocation scheme has to be encoded in the struc-
ture of the particular control hierarchy. When this is done, and for those explicit
instances, allocation can be extremely rapid and efficient. The moment the prob-
lem envelope exceeds the ability of the hierarchy to accommodate it, the control
hierarchy can no longer adapt.

Control hierarchies can be designed to be optimally efficient, since the entire
structure is known. Further, each component is trusted, additional work to
determine trustworthiness (e.g. Blockchain calculations) is not needed. Short

116 P. Feldman and A. Bucchiarone

of a monolithic system, a control hierarchy should be able to embody the lowest
computational intensity for well-defined tasks.

NIST RCS in particular is designed specifically to reduce cognitive load.
Controllers handle a single task, using the same preprocess/decision process/state
table/post process pattern. Developers quickly learn this methodology and can
easily contribute to developers working on different controllers. Debugging tools
that monitor the commands and responses between controllers provide high level
views of the functioning of the overall system, while drilldown into the common
state table operations within each controller can also be visualized using tools
that understand the RCS implementation.

A properly designed hierarchy has very low bandwidth requirements due to
the compartmentalization of the tasks within controllers. In places like high-
speed servo control, where multiple child controllers may need to react to rapid
commands by a parent controller, the system can be designed such that all
hardware shares a high-speed communication channel.

Because they are designed to deal with a particular environment, a factory
floor, a submarine, an autonomous vehicle, hierarchical control systems do not
have an inherent capacity to adapt to a different control environment. If new
hardware replaces old hardware on the factory floor, the control system must be
adjusted too. A good hierarchy makes this easy to do, with minimum impact on
the rest of the running system, but that is different from expecting the hierarchy
to adapt to the new hardware.

Due to the explicit design of the system and the reuse of common components
such as controllers, it is possible to design and build an extremely secure control
hierarchy. That being said, if the top level controller is hacked, the rest of the
system will blindly follow. As a rule, the risks of broken security lessen as the
control system moves away from the hierarchical side of the spectrum.

Research Challenges. A great deal of research has been performed on adaptive
hierarchical control systems [19,32]. Hierarchical systems have inherent disad-
vantages in that they need complete information across sub-systems to coordi-
nate control down to the individual actuators. As such, a designer of a large
scale, low response time system (such as a nuclear reactor) has to be aware of all
possible interactions within the system, since an actuator far down a one branch
of software involved with emergency response may vent high-pressure radioac-
tive steam into a section of plumbing normally involved with the steam used for
powering turbines [27]. The issue here is one of the combinatorial explosion of
possibilities that can occur in monolithic systems. Working though all potential
combinations is possible on small systems, but rapidly becomes uncomputable
as the hierarchy grows.

If, on the other hand, small, testable hierarchies can be linked so that rapid
response and control happens within the hierarchy, but looser interactions can
exist between hierarchies then more resilient systems can be designed. These
sets of smaller hierarchies can operate in clusters or ensembles could have the
ability to operate using local information and respond in more adaptive, flexible

Diversity in Massively Multi-agent Systems 117

ways to a scoped set of problems. This approach is discussed in the next section,
where we use urban mobility to explore how adaptive ensembles of hierarchies
can blend market flexibility and hierarchical control.

3 Ensembles of Hierarchies

Modern cities are complex socio-technical entities that exist to provide services
effectively to their residents and visitors. Networks for water, electricity, com-
munications, and finance permeate the urban environment. Further, people need
to travel quickly and conveniently between locations at different scales, ranging
from a trip of a few blocks to a journey across town or further. Each trip has
its set of requirements. Time may be of the essence. Cost may be paramount
and the convenience of door-to-door travel may be important. In each case, the
transportation infrastructure should seamlessly provide the best option. A mod-
ern city needs to flexibly integrate transportation options including buses, trains,
taxis, bicycles and cars. The combinatorial complexity of all these possibilities
negates the option of a single, monolithic control system. How would a grouping,
or ensemble of hierarchies perform in this situation?

In this section, we consider a simplified urban mobility system (UMS), that
comprises several means of transportation that are collectively managed. We
focus on the aspect of adaptivity in situations where computational agents and
affected human (e.g passengers, drivers) collectively reach adaptation decisions.
In the following we describe the scenario and demonstrate the challenges it poses
to collectively adapting socio-technical systems like UMS.

Our UMS consists of the following means of transportation:

– Regular bus service, a network of fixed bus routes with fixed timetable;
– Flexible Bus (FB), a service that collects trip requests from customers and

organizes on-demand routes that efficiently serve the requests;
– Car Pool, a service to share car journeys so that more than one person travels

in a car;
– Taxi, a conventional taxi service;

Each means of transportation has a complex internal substructure. For example
the FB service allows third party minibus owners to register their availability for
serving trips, and for customers to register trip requests (e.g., location, time).
The service dynamically creates routes on the basis of time and location of
the trips requested and the availability of vehicles. Each FB route is an unit
comprised of the vehicle (or FB driver) that is supposed to serve the route,
and passengers traveling within similar time and location spans. A FB route
is supervised by the FB company that provides all necessary infrastructure. It
is easy to see that a FB route is a good example of collaborative behavior:
passengers sacrifice part of their flexibility in order to travel cheaper, compared
to a taxi, and quicker compared to conventional buses.

118 P. Feldman and A. Bucchiarone

As shown in Fig. 1, our simulation of this system connects transportation
with a set of agents that can interact in different ways. Agents can be part of
several possible ensembles (i.e., from E1 to E9) according to their needs. Figure 1
shows the topology of the UMS example. It includes a hierarchical pattern but
also direct relations, as in the Ensemble E9 composed by the FlexiBus Company
(FBC) and the Car Pool Company (CPC).

To illustrate this, let us consider a messy but not unlikely scenario: A passen-
ger is late for her FB, so the bus waits until she arrives. A current passenger, fed
up by the extra waiting, leaves the bus to walk the remaining distance. To make
up time the driver speeds and is involved in an accident, blocking traffic and
requiring the FB company to rout around the congestion. This is not only a bad
day for the passengers, it is an extremely complicated and expensive problem
for the FB company. Its options include, among others:

1. refund passengers who cannot reach their destinations in time
2. reroute the running buses to prioritize the most affected customers
3. reroute the running buses so that the largest number of passengers reach their

destinations on time
4. reassign passengers to other routes
5. reassign (groups of) passengers to other means of transportation

In the following subsection we analyze the challenges posed by this UMS
scenario.

Fig. 1. Types of agents and ensembles in the UMS.

3.1 Research Challenges

The principal agents in the UMS scenario (i.e., passengers, FB drivers, FB com-
pany, etc.) are generally autonomous and act independently. This makes the
system highly dynamic and distributed. The surrounding environment of an
agent changes frequently and unpredictably (e.g. as other agents change their
minds) and therefore the system requires constant monitoring and adaptation.

Diversity in Massively Multi-agent Systems 119

Existing approaches [34,36,39], normally deal with multi-agent adaptive sys-
tems through isolated adaptation: each agent adapts itself independently from
each other. However, in our scenario the problem is complicated by collective
behavior. Even though agents are generally autonomous, they dynamically form
collaborative groups, called ensembles, to gain benefits that otherwise would not
be possible. The example of such an ensemble is a FB route (E1 in Fig. 1) which
coordinates the adaptation behavior of multiple agents (FB driver, passengers,
and FB company) and in return gives them certain benefits (e.g., cheap and
fast transportation). Membership of an ensemble may temporarily reduce the
flexibility of its agents. Within this context, isolated agent self-adaptation is not
effective. We can easily imagine what happens if a passenger books a trip with a
FB and then silently changes their mind and decide not to travel. It is likely to
cause unnecessary delay for the route (e.g. the bus will have a redundant stop)
and raise the cost of the trip for the remaining passengers, including potential
charges for the canceling passenger.

Even more serious consequences arise if a bus gets damaged: isolated adapta-
tion by the bus driver could totally break the passengers’ travel plans. Adapta-
tion has to take into account not only customers trip requests but also customers
constraints and preferences. For example, a particular passenger may want to
avoid traveling through unsafe areas in the city, but a possible re-planned route
may pass through such area.

The term ensemble has recently been introduced in the literature to denote
very large-scale systems of systems that may present substantial socio-technical
embedding [17,38]. They typify systems with complex design, engineering and
management, whose level of complexity comes specifically from bringing together
and combining in the same operating environment many heterogeneous and
autonomous components, systems and users, with their specific concerns. To
be robust against the high degree of unpredictability and dynamism of their
operating environments, and to sustain the continuous variations induced by
their socio-technical nature, ensembles need to self-adapt.

In adaptive systems with collective behavior, new approaches for adaptation
are therefore needed that allow (i) multiple agents to collectively adapt with (ii)
negotiations to decide which collective changes are best.

Collective adaptation also raises a second important challenge: which parts
of the system should be engaged in an adaptation? This is not at all trivial, since
solutions for the same problem may be generated at different levels. For instance,
a passenger’s delay may be resolved in the scope of a FB route, by re-planning
the route, or in the wider scope of the FB company, with the engagement of other
routes, or even in the scope of the whole UMS, with the engagement of other
means of transportation such as a car pool. The challenge here is to understand
these levels, formalize them and create a mechanism that decides the right scope
for an adaptation for a given problem.

Within our scenario, we can identify several levels of abstraction that operate
at different scales in time and space. An FB route combines passengers with
a driver, a Flexibus company combines FB routes, and an UMS combines a

120 P. Feldman and A. Bucchiarone

Flexibus company and other means of transportation. The higher the level of
abstraction, the wider the scope of adaptation.

The continuous and distributed adaptation is a key feature of Collective Adap-
tive Systems (CAS), when it comes to operating in constantly changing environ-
ment. Concepts that are close to those introduced above, and that characterize
CAS, have been studied in various domains such as, Swarm Intelligence, where
actors are essentially homogeneous and are able to adapt their behavior con-
sidering only local knowledge [11,21], or Autonomic computing, where the actor
types are typically limited and the adaptation is guided by predefined policies
with the objective to optimize the system rather than evolve it [4], or Service-
based systems where services are designed independently by different service
providers and are composed to achieve a predefined goal (i.e., user tasks [6] or
business goals [23]), or Multi-agent based systems where activities of different
actors are regulated by certain collectively defined rules (i.e., norms) [12]. Most
of the results obtained in these domains are tailored to solve a specific problem
using a specific language or model and lack of generality.

At the same time, these studies tackle only some of the challenges for individ-
ual agents, while leaving decision-making for group, collective, and larger scales
relatively unexamined.

For these reasons, we should move from individual based applications to col-
lective systems with techniques that support adaptation of collectives. This will
be achieved by defining new software engineering methods (i.e., models, theo-
ries and tools) that are highly flexible and can be specialized to fulfill different
tasks in different ways. At the same time, they will introduce features for the
collaboration and coordination among agents, as this is an essential prerequisite
for building collective adaptive systems (CAS). The collective nature of software
systems, with the important aspect of the diversity that different agents bring
in, makes the theme issue completely new and different with respect to previous
issues in the field of engineering complex and adaptive systems. Models for CAS
need to be adaptable by design; this means that each agent in the system must be
able to adapt its behavior taking into account the current context/situation. The
model should be flexible and extensible, fusing a priori and learned knowledge.
The local knowledge of an agent should be extendable during its lifetime, based
on collaboration with other agents and the current context of the adaptation.
Finally, the model should consider the heterogeneity and diversity of the agents,
incorporating the specific roles that they play in the collective.

In the next sections we introduce our approach that addresses the challenges
above in order to facilitate collective adaptation.

3.2 General Framework

Our approach addresses the challenge of collective adaptation by proposing a new
notion of ensembles that enables systems with collective adaptability to be built
as emergent aggregations of autonomous and self-adaptive agents. Key properties
of our approach include (i) the emphasis on collaboration towards fulfillment
of individual, diverse goals, and (ii) the heterogeneous nature of an ensemble

Diversity in Massively Multi-agent Systems 121

with respect to roles, behaviors and goals of its participants. These properties
distinguish our approach from other types of ensemble models, like for instance
swarms, where all elements of a community have a uniform behavior and global
shared goal [11,21], and multi-agent systems and agent-based organizations [16],
where there may be several distinct roles and behaviors, but the differentiation
is still limited and often pre-designed.

We define an ensemble in terms of a set of roles that can be taken by par-
ticipating agents. A role can be seen as a component (or a type) that can be
instantiated by agents of different types (e.g. a user can either play the role of a
carpool passenger or a driver).

Each agent role (as depicted in Fig. 2, left-side) is modeled by a core process
(i.e., Agent Behavior) and a Scope artifact used to understand when and how a
role must be involved in a collective adaptation problem resolution. Each Scope is
formed by an Handler (H) capable to catch an Issue and trigger the appropriate
Solver.

Solvers model the ability of an agent to handle one or more issues. Each
solver relates to the particular issue that it can handle. Moreover, each handler
refers to a finite scope in the process of an agent, and it can be of two different
types: (i) external handlers are used to catch issues coming from other agents in
the system (both in the same or in a different ensembles); (ii) internal handlers
are devoted to monitor internal property and catch the issues arising when this
properties are violated.

Fig. 2. Agent and ensemble models.

During the normal execution of the system, interactions between agents and
ensembles are formed. Ensembles can be created spontaneously and change over

122 P. Feldman and A. Bucchiarone

time: different agents may join or leave an existing ensemble dynamically and
autonomously. Their termination is also spontaneous: participants have reached
their goals, or the ensemble itself has ceased to provide benefit.

For instance, in the carpooling scenario (see Fig. 2, right-side), users subscribe
to a carpool ride by exploiting functionalities of the carpool manager, which has
previously set up the ride and assigned a driver to it. In this way, the ensemble
made by the carpool manager, the driver and the passengers is constructed1.

During execution, the ensemble can evolve. New passengers can subscribe to
the ride, while others can leave. However, to deal with unpredictable changes,
local adaptation is not enough, since the scope of these changes goes beyond the
single agent. Typical changes occurring in dynamic environments are character-
ized by the fact of affecting different agents, who can also belong to different
ensembles:

– the agent directly related to the change (e.g., a ride interrupted directly affects
the driver);

– the agents belonging to the same ensemble (e.g., both the passengers on board
and the ones waiting at the pickup points);

– the agents involved as a consequence of the adaptation executed to solve
the problem (e.g., the Carpool company provides a new plan for the waiting
passengers).

This demonstrates the need for collective adaptation approaches able to deal
with dynamic changes, and whose scope can be, in the worst case, the entire
system. Thus, such an approach must provide one or more decision management
strategies, to allow different agents to communicate and cooperate in a collective
manner.

The collective adaptation process is handled in a decentralized manner by
the agents involved, directly or indirectly, in an adaptation issue. Each agent
implements a Monitor - Analyze - Plan - Execute (MAPE) loop [18] (as depicted
in Fig. 3) that allows for the dynamic interaction with the other agents. We use a
color code to distinguish the four phases of the MAPE loop. In the following, we
highlight the most interesting states of the SM. In the Monitoring phase, each
agent monitors the environment through active handlers. Issues can come either
from the agent itself (Issue Triggered) or from a different agent, asking support
for solving an issue (Issue Received).

The sequence begins with the Analyze phase, where the issue solver is called
(Local Solver Called). In the Planning phase, if the solver has found a solution
(Solution Found), the Collective Planning phase begins. All the agents involved
in the issue resolution process will collectively collaborate to solve it.

In this example, a solution provided by the solver foresees the involvement of
other agents, which are first found (Targets Found), and then triggered (Issues
Targeted) to be involved in the resolution process. Once the current agent

1 In this paper, we focus only on the collective adaptation aspect for agents. Their
normal execution can be handled using the technique presented in [8], which is
compatible with the approach we are proposing.

Diversity in Massively Multi-agent Systems 123

receives feedback from the triggered agents (Solution Received), it selects the
best solution (Solution Chosen) (e.g., by applying approaches like [7,31]).

At this point, we should distinguish two cases. If the issue was triggered
internally (root node edge), the agent asks the involved targets to commit their
local best solution (Ask Partners To Commit), it waits for their commit to be
done (All Partners Commit Done), and eventually it commits its local solution
(Commit Local Solution). Otherwise, if the issue was coming from outside (not
root node edge), the agent reports the feedback to the issues sender (Solution
Forwarded), and it waits for a future commit (Commit Requested).

The agent can receive a positive or a negative reply for its proposed solution.
In both cases, it executes a solution commit (Commit Local Solution), which will
be empty in the negative case.

Fig. 3. MAPE state machine.

3.3 Hierarchical Adaptation

As we have seen so far, an agent instance resembles an ensemble instance in that
both of them are essentially sets of role instances. However, an agent instance
includes role instances belonging to different ensembles but played by a single
agent. This architecture allows us to model more complex agents that can run
multiple tasks simultaneously (e.g, a person can easily take/plan many activities
at a time: travelling, visiting a cinema, organizing a meeting with colleagues etc.).
However, a much more interesting application for agents with multiple roles is
establishing links between different ensembles. If we assume that, similarly to
ensemble instances, roles instances within an agent can also communicate with
each other, this can be used to organize coordination of multiple ensembles.

124 P. Feldman and A. Bucchiarone

Fig. 4. Ensembles hierarchy.

To demonstrate this, let us consider the example in Fig. 4. Here we see two
different ensembles: one (FlexiBus Ensemble) is devoted to managing the whole
FlexiBus system and includes the roles of a manager and a route.

Multiple routes can exist at a time. Moreover, there is Route Ensemble
devoted to managing a particular FlexiBus route. Multiple ensemble instances
of this type can exist. If we try to place in this picture an agent (e.g., a piece of
software) that manages a route, it is clear that its role will be twofold: on the
one hand it is a subordinate (with role route) in a higher level ensemble that
manages the whole FlexiBus system, and at the same type it is a leader in the
lower level ensemble that manages participants of a single route.

As such, it plays two roles in these two ensemble simultaneously. By letting
role instances within an agent talk to each other (e.g., using principles similar to
issue communication), we can efficiently establish control links between ensem-
bles. In the figure, it is exemplified with bold bidirectional arrows. For example,
we can imagine that, for some intrinsic reasons, the FlexiBus manager requests
a certain route to change its itinerary (e.g., in order to accommodate another
passenger).

The issue communication is sent to the corresponding role instance (arrow 1).
Trying to resolve this issue, the route role instance rethrows the issue to the RM
role instance within the same agent (arrow 2). Consequently, the RM role instance
triggers negotiation within the route ensemble to understand the possible solu-
tions. Finally, throw the same links the resolution options are returned back to
the FlexiBus manager, who makes the decision. We can see that everything works
similarly to the collective adaptation within an ensemble, but now the changes
happen on the inter-ensemble scale.

It is worth to remark that inter-ensemble communication can be used not
only for propagating decisions to the lower level of abstraction, but also to scale

Diversity in Massively Multi-agent Systems 125

up an issue in case it cannot be resolve on the lower level. For example, if the
RM instance cannot resolve bus delay alone, it may scale the problem up to the
level of the FlexiBus system to possibly find a solution that engages other routes
(arrows 4, 5, 6). By joining all the communications into a single picture, we can
derive even a more complex scenario, where the bus delay is resolved on the level
of FlexiBus system (arrows 4, 5, 6) by reassigning some passengers to another
route (arrows 1, 2, 3).

Even though our example shows how our architecture can be used to build
arbitrarily large hierarchical systems with flexible collective adaptation, its use
is not limited to hierarchies and can be exploited to design any topology based
on peer-to-peer links between elements.

3.4 Collective Adaptation Engine

We have released a standalone Java implementation of the Collective Adapta-
tion Engine (CAE), approach described in the previous sections. It has been first
released as a standalone component2, and used in the DeMOCAS framework [10]3.

DeMOCAS is a framework for the modeling and execution of Collective
Adaptive Systems (CAS). It includes mechanisms for services specialization and
adaptation using the concept of Domain Objects [9]. This allows the system to
model customizable and adaptable services. DeMOCAS is build around three
main aspects:

– dynamic settings: each CAS is a collection of autonomous agents entering and
exiting the system dynamically;

– collaborative nature of systems: agents can collaborate in groups (i.e., ensem-
bles) for their mutual benefit;

– collective adaptation: multiple agents must adapt their behavior in concert
to respond to critical run-time impediments.

In this framework, collective adaptation is used to handle unpredictable
changes, which usually affect different running agents. Collective adaptation
makes the system robust and resilient in the face of situations that could cause
more rigid approaches to fail. The collective adaptation is performed by exploit-
ing the handler and solver constructs, and by associating a MAPE (Monitor,
Analyze, Plan, Execute) loop to each agent, as described in previous sections.

In Fig. 5 we show the Collective Adaptation Viewer of DeMOCAS. This
screen capture shows a report issue resolution result for an Intense Traffic Issue
triggered by a Flexibus Driver in mid-route. On the left side, all the agents
involved in the issue resolution process are listed. The issue resolution tree of
the Route Manager agents that owns the solver for the triggered issue, is shown
on the right side.

2 For the interested reader, the prototype is available in its entirety on a GitHub repos-
itory https://github.com/das-fbk/CollectiveAdaptationEngine.

3 https://github.com/das-fbk/DeMOCAS.

https://github.com/das-fbk/CollectiveAdaptationEngine
https://github.com/das-fbk/DeMOCAS

126 P. Feldman and A. Bucchiarone

Fig. 5. Collective adaptation viewer.

This type of approach, where responsive hierarchies are loosely coupled into
adaptive systems provides a war of addressing the types of system errors that can
emerge when large numbers of components are tightly connected in geometrically
complex networks. We discuss this in more detail in the following section.

4 Resilience Engineering for Normal Accidents

Charles Perrow established the concept of Normal Accidents [27] as property of
complex, high-risk systems. These are unpredictable, yet inevitable combinations
of small failures that build upon each other within an unforgiving environment.
Normal accidents include catastrophic failures such as reactor meltdowns, air-
plane crashes, and stock market collapses. Though each failure is unique, all
these failures have common properties:

– The system’s components are stiffly connected. A change in one rapidly
impacts one or more other components;

– The system is densely connected, so that the actions of one part affects many
others, regardless of the speed of action;

– The system’s internals are difficult to observe, so that failure can appear
without warning.

The systems that live on the TaaS spectrum are complex - they consist
of large numbers vehicles integrated in a complicated physical, electronic, and
software webs. They are high risk, both at the individual level, as the vehicles
themselves are inherently dangerous, and in a broader context, where misallo-
cation of transport during an emergency could result in large scale suffering or
death.

To see how easy it would be to create a single TaaS network, consider the
case where blockchain-mediated transactions have become the exclusive payment

Diversity in Massively Multi-agent Systems 127

scheme for transportation. There are many potential benefits for such a dis-
tributed payment system, among them a greater level of purchasing anonymity
in an environment where every transaction can be tracked. But this decision to
use a decentralized system means that every transaction has to have visibility
to the distributed blockchain ledgers [15]. In essence, every node in the financial
system is now closely coupled. If an accident occurs that breaks the network,
financial transactions become impossible.

For example, consider a near-future case of a TaaS using self-driving vehicles
that depends on blockchain in an island network created by an earthquake that
has cut communication lines to the outside world. If the system were like the
New York Stock Exchange (NYSE)4, the entire system would suspend trading
until the blockchain ledger servers could be reached, preventing evacuations. Or
consider another example, where thousands of identical self-driving cars are sub-
tly hacked so that they perceive squirrels as children in the street [24]. Adhering
to the social consensus on trolley problem issues [26], thousands of self-driving
cars crash into trees.

These particular accidents probably will not happen, but we can be confident
that if the systems we design have Perrow’s properties, something like them
will. So how do we design systems for problems that are unknown? Ideally, the
answer would be to ensure that any deployed systems are not densely and tightly
connected, and that the elements control behavior are visible to those with the
appropriate credentials.

It is not always easy to meet these three constrains short of legislation. But
a proxy for addressing the stiffness and tightness of the connections in a single
system is to ensure that multiple, distinct TaaS systems are always present in
the communities they serve. Although each system may be dense, stiff hierarchy,
the connections between the systems should be few and slack. This enforces a
level of resilience at a minor cost in efficiency. Every vehicle and user doesn’t
need to be a individual competing across multiple markets, but neither should
there only be one rigid hierarchy. We believe that distributed ensembles is an
appropriate compromise between responsiveness and resiliency.

Acknowledgments. We’d like to thank Aaron Dant of ASRC Federal for his contri-
bution to the direction and development of the market section of this paper.

References

1. Stock Exchange. Oxford University Press, oed online edn. http://www.oed.com.
proxy-bc.researchport.umd.edu/view/Entry/190617?rskey=9zzLVE&result=2

2. Consumer spending on vehicles averaged 8427 in 2016, September 2017. https://
www.bls.gov/opub/ted/2017/consumer-spending-on-vehicles-averaged-8427-in-
2016.htm

3. Table 1. Median usual weekly earnings of full-time wage and salary workers by sex,
quarterly averages, seasonally adjusted, October 2018. https://www.bls.gov/news.
release/wkyeng.t01.htm

4 https://www.nyse.com/.

http://www.oed.com.proxy-bc.researchport.umd.edu/view/Entry/190617?rskey=9zzLVE&result=2
http://www.oed.com.proxy-bc.researchport.umd.edu/view/Entry/190617?rskey=9zzLVE&result=2
https://www.bls.gov/opub/ted/2017/consumer-spending-on-vehicles-averaged-8427-in-2016.htm
https://www.bls.gov/opub/ted/2017/consumer-spending-on-vehicles-averaged-8427-in-2016.htm
https://www.bls.gov/opub/ted/2017/consumer-spending-on-vehicles-averaged-8427-in-2016.htm
https://www.bls.gov/news.release/wkyeng.t01.htm
https://www.bls.gov/news.release/wkyeng.t01.htm
https://www.nyse.com/

128 P. Feldman and A. Bucchiarone

4. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: towards a general model
for self-adaptive systems. In: Reddy, S., Drira, K. (eds.) WETICE, pp. 48–53. IEEE
Computer Society (2012)

5. Andres Figliozzi, M., Mahmassani, H., Jaillet, P.: Framework for study of car-
rier strategies in auction-based transportation marketplace. Transp. Res. Rec. J.
Transp. Res. Board 1854, 162–170 (2003)

6. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: A con-
ceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012.
LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28872-2 17

7. Bucchiarone, A., Dulay, N., Lavygina, A., Marconi, A., Raik, H., Russo, A.: An app-
roach for collective adaptation in socio-technical systems. In: IEEE SASO Work-
shops, pp. 43–48 (2015)

8. Bucchiarone, A., Mezzina, C.A., Pistore, M., Raik, H., Valetto, G.: Collective adap-
tation in process-based systems. In: SASO 2014, pp. 151–156 (2014)

9. Bucchiarone, A., De Sanctis, M., Marconi, A., Pistore, M., Traverso, P.: Design
for adaptation of distributed service-based systems. In: Barros, A., Grigori, D.,
Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 383–393.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-0 27

10. Bucchiarone, A., De Sanctis, M., Marconi, A., Martinelli, A.: DeMOCAS: domain
objects for service-based collective adaptive systems. In: Drira, K., et al. (eds.)
ICSOC 2016. LNCS, vol. 10380, pp. 174–178. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68136-8 19

11. C. Pinciroli et al.: ARGoS: a modular, multi-engine simulator for heterogeneous
swarm robotics. In: IROS, pp. 5027–5034 (2011)

12. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-
based collaboration patterns for autonomic service ensembles. In: 2011 Interna-
tional Conference on Collaboration Technologies and Systems, CTS 2011, Philadel-
phia, Pennsylvania, USA, 23–27 May 2011, pp. 508–515 (2011)

13. Clearfield, C., Tilcsik, A.: Meltdown: Why Our Systems Fail and What We Can Do
About It. Atlantic Books, Penguin Canada, 20 March 2018. https://books.google.
it/books/about/Meltdown.html?id=46krDwAAQBAJ&redir esc=y

14. Crites, R.H., Barto, A.G.: Improving elevator performance using reinforcement
learning. In: Advances in Neural Information Processing Systems, pp. 1017–1023
(1996)

15. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun.
ACM 61(7), 95–102 (2018)

16. Far, B.H., Wanyama, T., Soueina, S.O.: A negotiation model for large scale multi-
agent systems. In: Proceedings of the 2006 IEEE International Conference on
Information Reuse and Integration, IRI - 2006: Heuristic Systems Engineering,
Waikoloa, Hawaii, USA, 16–18 September 2006, pp. 589–594 (2006)

17. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive sys-
tems: state of the art and research challenges. In: Wirsing, M., Banâtre, J.-P.,
Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Comput-
ing Paradigms. LNCS, vol. 5380, pp. 1–44. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89437-7 1

18. IBM: An architectural blueprint for autonomic computing. Technical report, IBM
(2006)

19. Jones, A.T., McLean, C.R.: A proposed hierarchical control model for automated
manufacturing systems. J. Manuf. Syst. 5(1), 15–25 (1986)

https://doi.org/10.1007/978-3-642-28872-2_17
https://doi.org/10.1007/978-3-642-28872-2_17
https://doi.org/10.1007/978-3-662-48616-0_27
https://doi.org/10.1007/978-3-319-68136-8_19
https://doi.org/10.1007/978-3-319-68136-8_19
https://books.google.it/books/about/Meltdown.html?id=46krDwAAQBAJ&redir_esc=y
https://books.google.it/books/about/Meltdown.html?id=46krDwAAQBAJ&redir_esc=y
https://doi.org/10.1007/978-3-540-89437-7_1
https://doi.org/10.1007/978-3-540-89437-7_1

Diversity in Massively Multi-agent Systems 129

20. Kirilenko, A., Kyle, A.S., Samadi, M., Tuzun, T.: The flash crash: high-frequency
trading in an electronic market. J. Finan. 72(3), 967–998 (2017)

21. Levi, P., Kernbach, S.: Symbiotic-Robot Organisms: Reliability, Adaptability, Evo-
lution, vol. 7. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
11692-6

22. Lima, D.: Uber caps prices ahead of Hurricane Irma’s arrival, September
2017. https://www.bizjournals.com/southflorida/news/2017/09/07/ride-hailing-
service-caps-prices-ahead-of.html

23. Marconi, A., Pistore, M., Traverso, P.: Automated composition of web services:
the ASTRO approach. IEEE Data Eng. Bull. 31(3), 23–26 (2008)

24. Mihajlović, M., Popovic̀ N.: Fooling a neural network with common adversarial
noise. In: 2018 19th IEEE Mediterranean Electrotechnical Conference (MELE-
CON), pp. 293–296, May 2018. https://doi.org/10.1109/MELCON.2018.8379110

25. Nandiraju, S., Regan, A.: Freight transportation electronic marketplaces: a survey
of the industry and exploration of important research issues (2008)

26. Noothigattu, R., et al.: A voting-based system for ethical decision making. CoRR
abs/1709.06692 (2017). http://arxiv.org/abs/1709.06692

27. Perrow, C.: Normal Accidents: Living with High Risk Technologies-Updated Edi-
tion. Princeton University Press, Princeton (2011)

28. Popov, S.: The tangle, p. 131 (2016)
29. Quintero, R., Barbera, T.: A real-time control system methodology for developing

intelligent control systems. Technical report (1992)
30. Roth, J.: The application of the hierarchy system to on-line process control. J. Br.

Inst. Radio Eng. 24(2), 117–125 (1962)
31. Saaty, T.L.: What is the analytic hierarchy process? In: Mitra, G., Greenberg, H.J.,

Lootsma, F.A., Rijkaert, M.J., Zimmermann, H.J. (eds.) Mathematical Models for
Decision Support. NATO ASI Series, vol. 48, pp. 109–121. Springer, Heidelberg
(1988). https://doi.org/10.1007/978-3-642-83555-1 5

32. Singh, M.G., Drew, S.A., Coales, J.F.: Comparisons of practical hierarchical control
methods for interconnected dynamical systems. Automatica 11(4), 331–350 (1975)

33. Tesfatsion, L.: Agent-based computational economics: modeling economies as com-
plex adaptive systems. Inf. Sci. 149(4), 262–268 (2003)

34. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting control loops in
self-adaptive systems. In: IEEE/ACM SEAMS 2011, pp. 202–207 (2011)

35. Wellman, M.P.: Market-oriented programming: some early lessons. In: Clearwater,
S.H. (ed.) Market-Based Control: A Paradigm for Distributed Resource Allocation,
pp. 74–95. World Scientific, Singapore (1996)

36. Weyns, D., Malek, S., Andersson, J.: FORMS: unifying reference model for formal
specification of distributed self-adaptive systems. TAAS 7(1), 8 (2012)

37. Yuan, Y., Wang, F.Y.: Towards blockchain-based intelligent transportation sys-
tems. In: 2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), pp. 2663–2668. IEEE (2016)

38. Zambonelli, F., Bicocchi, N., Cabri, G., Leonardi, L., Puviani, M.: On self-
adaptation, self-expression, and self-awareness in autonomic service component
ensembles. In: SASOW, pp. 108–113 (2011)

39. Zhong, C., DeLoach, S.A.: Runtime models for automatic reorganization of multi-
robot systems. In: IEEE/ACM SEAMS 2011, pp. 20–29 (2011)

https://doi.org/10.1007/978-3-642-11692-6
https://doi.org/10.1007/978-3-642-11692-6
https://www.bizjournals.com/southflorida/news/2017/09/07/ride-hailing-service-caps-prices-ahead-of.html
https://www.bizjournals.com/southflorida/news/2017/09/07/ride-hailing-service-caps-prices-ahead-of.html
https://doi.org/10.1109/MELCON.2018.8379110
http://arxiv.org/abs/1709.06692
https://doi.org/10.1007/978-3-642-83555-1_5

CARAVAN: A Framework
for Comprehensive Simulations
on Massive Parallel Machines

Yohsuke Murase1(B) , Hiroyasu Matsushima2 , Itsuki Noda3 ,
and Tomio Kamada1,4

1 RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
yohsuke.murase@gmail.com

2 School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
matsushima@sys.t.u-tokyo.ac.jp

3 Artificial Intelligence Research Center, AIST, Tsukuba, Ibaraki 305-8560, Japan
i.noda@aist.go.jp

4 Graduate School of System Informatics, Kobe University,
Kobe, Hyogo 657-8501, Japan
kamada@fine.cs.kobe-u.ac.jp

Abstract. We present a software framework called CARAVAN, which
was developed for comprehensive simulations on massive parallel com-
puters. The framework runs user-developed simulators with various
input parameters in parallel without requiring the knowledge of parallel
programming. The framework is useful for exploring high-dimensional
parameter spaces, for which sampling points must be dynamically deter-
mined based on the previous results. Possible use cases include opti-
mization, data assimilation, and Markov-chain Monte Carlo sampling in
parameter spaces. As a demonstration, we applied CARAVAN to an evac-
uation planning problem in an urban area. We formulated the problem as
a multi-objective optimization problem, and searched for solutions using
multi-agent simulations and a multi-objective evolutionary algorithm,
which were developed as modules of the framework.

Keywords: Multi-agent social simulation ·
Parameter space exploration · High-performance computing

1 Motivation and Significance

The advancement of information and communication technologies in recent
decades revolutionized the study of social behavior as we gained access to the
huge number of the digital records, so called “big-data”, of our daily activities.
Various mathematical methods and algorithms have successfully been applied to
analyze these empirical data to characterize the societal activities. After empir-
ical verification of the data, the next steps are model development and its simu-
lations to deepen our understanding of the underlying mechanisms. Multi-agent
c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 130–143, 2019.
https://doi.org/10.1007/978-3-030-20937-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_9&domain=pdf
http://orcid.org/0000-0002-5872-420X
http://orcid.org/0000-0001-7301-1956
http://orcid.org/0000-0003-1987-5336
http://orcid.org/0000-0002-1646-1683
https://doi.org/10.1007/978-3-030-20937-7_9

CARAVAN: A Framework for Comprehensive Simulations 131

social simulation (MASS) serves as a powerful tool because social systems often
demonstrate non-trivial collective phenomena that emerge from the actions of
individuals, including the occurrence of traffic jams, bursty spreading of rumors
on social networks, and a sudden crash in economic markets. Through the devel-
opment of the models which based on the descriptions at an individual level,
we are able to study the causal relationships between microscopic activities and
their emergent macroscopic consequences. Moreover, well-developed MASS is
expected to contribute to the better design of our social systems and services
through the simulation of various possible future scenarios.

However, as discussed in [1], the application of MASS is not as straightfor-
ward as that of simulations for physical systems. One of the most critical diffi-
culties is the fact that models for MASS are not as well established as those for
physical systems. Models for MASS inevitably involve a non-negligible amount
of uncertainty because individual behavior is the outcome of highly complicated
intellectual, psychological, and behavioral processes that are different for each
person. Furthermore, multiple social phenomena, such as the economy and traf-
fic, may mutually interact, which makes it even more difficult to identify the
factors to incorporate into a model. Even big data cannot be a solution to these
problems because the data are often incomplete and biased [2] because of tech-
nical and privacy issues.

One of the methodologies to overcome these difficulties is the use of an
exhaustive simulation [1]. By its nature, it is impossible to precisely predict an
actual social system using a single run of MASS. Instead, it is more productive
to investigate the global phase diagram of the system by running simulations
with various assumptions and parameters to compensate for uncertainty. Such
exhaustive simulations require both a huge amount of computational resources
and effective algorithms to explore broad parameter spaces; hence, the effective
application of high-performance computers (HPCs) are necessary.

In [1], Noda et al. discussed the expected computational scales for several
domains of MASS and summarized them as a road map. According to the road
map, although it is hypothetical, the number of required runs for a research issue
in the coming decades will be order of 102–106. Although it is a so-called embar-
rassingly parallel problem, running such a large number of simulation jobs is not
a simple issue from a technical point of view. Furthermore, intelligent algorithms
for sampling parameter spaces are required as a naive random sampling would
evidently be useless in a high-dimensional space. Hence, software frameworks are
needed in order to correctly manage an enormous number of jobs on massive par-
allel computers, and to provide functions to define workflow to sample parameter
spaces effectively. One of the solutions to address this problem is software called
“OACIS”, which manages simulation jobs automatically and provides a simple
interface for users [3,4]. Although OACIS works fairly well for a wide range of
problems, it can only manage up to 102–104 jobs because of the design decision
to maximize usability and versatility. To manage even more jobs easily, we need
another framework that is more specialized in terms of scalability.

132 Y. Murase et al.

In this article, we present a software framework called CARAVAN for
parameter-space exploration on massive parallel super-computers. It was devel-
oped as an open-source software and is available on github [5]. By combining a
simulator developed by a user with CARAVAN, we are able to run the simulator
with various input parameters in parallel, making full use of HPCs. As shown
in the next section, it scales well up to tens of thousands of processes and can
manage millions of tasks. Using the framework, users become free from writ-
ing a code for parallelization using an Message Passing Interface (MPI) library
because concurrent execution and scheduling of the simulation are managed by
the framework. Furthermore, it is applicable not only to trivial parameter par-
allelization but to more complex parameter searching, such as optimization or
Markov chain Monte Carlo sampling, for which sampling points are dynami-
cally determined based on the previous results. In the next section, we illustrate
the architecture of CARAVAN. Details of the implementation and its perfor-
mance evaluation on the K computer are shown in Sect. 3. In Sect. 4, we present
the application of CARAVAN to a MASS for evacuation guidance. In the final
section, we present a summary and future perspectives.

2 Software Description

2.1 Overall Architecture

Figure 1 illustrates the architecture of CARAVAN. It consists of three modules:
“search engine,” “scheduler,” and “simulator.”

Scheduler

Search Engine

Simulator

tasktasktasktask

tasktasktaskresult

Simulator Simulator Simulator Simulator

task

result

task result

task

result result result result

task task task

X10

Fig. 1. An overview of the architecture of CARAVAN.

Simulator. A simulator is an executable application that the user wants to
execute in parallel. It is executed as an external process by the scheduler that
receives input parameters as command line arguments. A single execution of
a simulator is called a “task” in CARAVAN.

CARAVAN: A Framework for Comprehensive Simulations 133

Scheduler. The scheduler is the module that is responsible for parallelization. It
receives commands to execute simulators from the search engine, distributes
them to available nodes, and executes the simulators in parallel. This module
is implemented in the X10 language [6], which is compiled into native code
linked to an MPI library.

Search Engine. The search engine is a module that determines the policy
on how parameter space is explored. More specifically, it generates a series
of commands to be executed, that is tasks, and sends them to the sched-
uler. When a task is complete, the search engine receives its results from the
scheduler. Based on the received results, the search engine can generate other
series of tasks repeatedly. Because tasks are executed in parallel, communi-
cation between the search engine and the scheduler occurs asynchronously.

Among the three modules, users prepare a simulator and a search engine
to conduct parameter-space exploration. A simulator is implemented as an exe-
cutable program to be integrated into the framework. Because it is an external
process, a user can implement a simulator in any language.

A search engine is the module to define the workflow of parameter-space
sampling. Because parameter space is usually a high-dimensional space, various
types of importance sampling, such as evolutionary optimization or Markov-
chain Monte Carlo sampling, must be conducted. Hence, the parameter space
to explore must be dynamically determined based on the existing simulation
results, which is hard to realize with a Map-Reduce like framework. To implement
such sampling algorithms, the framework provides a set of Python functions, or
application programming interfaces (APIs), including ones to define callbacks
which are invoked when tasks are complete.

The scheduler module is not modified by users; therefore, users do not have
to write any X10 code by themselves. Once a simulator and a search engine
are implemented, users can conduct parameter space exploration using tens of
thousands of processors.

2.2 Requirements for a Simulator

A simulator is a stand-alone executable program that must satisfy the following
requirements:

– accept parameters for simulations as command line arguments;
– generate outputs in the current directory; and
– (optional) write results to the “ results.txt” file.

First, a simulator must be prepared such that it accepts input parameters
as command line arguments. This is because the scheduler receives a series of
command lines from the search engine and executes them as an external process.
Another requirement for a simulator is that it must generate its output files
or directories in the current directory. This is because the scheduler creates a
temporary directory for each task and invokes the command after setting the
temporary directory as the current directory.

134 Y. Murase et al.

If a user’s simulator writes a file called “ results.txt,” it is parsed by the
scheduler and its contents are sent back to the search engine. This is useful
when a user’s search engine determines the next parameters according to the
simulation results. For instance, if users would like to optimize a certain value of
the simulation results, they should write a value that they want to minimize (or
maximize) to the “ results.txt” file. The file may contain several floating point
values as its result.

2.3 Preparation of a Search Engine

The search engine is responsible for generating the command to be executed
by the scheduler. An example of a minimal program for the search engine is as
follows:

import sys

from caravan.server import Server

from caravan.task import Task

with Server.start ():

for i in range (10):

Task.create("echo�hello�caravan�%d" % i)

This sample creates a list of tasks, each of which runs the echo command.
These commands are distributed to the subprocesses of the scheduler and exe-
cuted in parallel.

In many applications, such as optimization, new tasks must be generated
based on the results of completed tasks. Methods to define callback functions
are provided for that purpose:

with Server.start ():

for i in range (10):

task = Task.create("sleep�%d" % (i%3+1))

task.add_callback(lambda t, ii=i: Task.create("sleep�

%d" % (ii%3+1)))

If users run this program, they will find that 10 tasks are created, and 10
more tasks are created after each of the initial tasks is completed.

Although callbacks work fine, the code tends to become too complicated
because of deeply nested callbacks. One of the best practices to avoid complexity
is to use a “async/await” pattern, for example,

def run_sequential_tasks(n):

for t in range (5):

task = Task.create("sleep�%d" % ((t+n)%3+1))

Server.await_task(task)

this method blocks until the task is finished.

with Server.start ():

for n in range (3):

Server.async(lambda n=n: run_sequential_tasks(n))

CARAVAN: A Framework for Comprehensive Simulations 135

This program spawns three concurrent activities, each of which executes five
tasks sequentially. For each activity, a new task is created after the previous task
is complete. If users visualize the results of the following program, they will see
three concurrent lines of sequential tasks of length five.

In addition to the “await” method, the “await all tasks” method is also pro-
vided to wait for a set of tasks to complete. After awaiting tasks, users can
obtain the results of the simulation runs by accessing the “results” attribute of
the task. Using these methods, users can achieve a program in which tasks are
created depending on the results of completed tasks.

There are also other classes and methods, such as “ParameterSet” and
“Run,” to simplify the implementation of Monte Carlo sampling. We do not
present the full list of the APIs here. For the full documentation, please refer to
the repository of CARAVAN [5].

3 Implementation

CARAVAN as a whole is executed as a single MPI job. When the MPI process
starts, the rank 0 process (hereafter, the root process) invokes a Python process
of the search engine as an external process. The search engine process commu-
nicates with the root process using bidirectional pipelines, thereby sending the
information of simulation tasks and receiving their results. Once a series of tasks
is sent to the root process, they are distributed to the other subprocesses via
an MPI protocol, that is, these MPI processes work as the scheduler module.
The subprocesses that receive the tasks then call the simulator, and wait until
its simulation is complete. The results are parsed by the subprocesses of the
scheduler, and then sent back to the search engine.

CARAVAN was designed for cases in which the duration of each task (a
single run of user’s simulator) typically ranges from several seconds to a few
hours. CARAVAN does not perform quite well for tasks that are complete in
less than a few seconds. One of the reasons for this limitation originates from
the design decision that a simulator is executed as an external process. For each
task, CARAVAN creates a temporary directory, creates a process, and reads a file
generated by the simulator, which represents some overheads. If users would like
to run fine-grained tasks, they should consider using Map-Reduce frameworks,
such as [7]. Instead, the CARAVAN scheduler is designed such that it achieves
ideal load balancing, even when the durations vary by orders of magnitude.
Tolerance for a variation in time is essential for parameter space exploration
because elapsed times typically depend significantly on the parameter values.
CARAVAN was designed to scale up well to tens of thousands of MPI processes
for tasks of this scale.

The scheduler module adopts the producer-consumer pattern, but with a
“buffered” layer between the producer and its consumers, as shown in Fig. 2.
The root process works as a producer. The producer has hundreds of buffer pro-
cesses, each of which has hundreds of consumer processes. The buffered layer
is introduced to prevent communication overload in a massive parallel environ-
ment. Without the buffered layer, the producer process must communicate with

136 Y. Murase et al.

thousands or more consumer processes, which causes technical problems and the
entire process cannot be completed normally. By introducing the buffered layer,
the producer communicates only with hundreds of buffer processes. The buffer
processes have their own task queues to store the tasks, and repeatedly send
them to their consumers gradually, significantly reducing the amount of com-
munication of the producer process. A similar mechanism is also adopted for
the other direction of communication. The buffer processes have a store to keep
the results for a short time to prevent too frequent communication. By default,
CARAVAN allocates one buffer process to 384 MPI processes, which is a good
parameter for a wide range of practical use cases.

The current version of CARAVAN supports only serial or multi-thread par-
allel programs as simulators. It cannot invoke an MPI-parallelized program as a
simulator because CARAVAN launches the simulation command as an exter-
nal process using a “system” command, not as an MPI process invoked by
an“MPI Comm Spawn” function. In a future release, we plan to support MPI-
parallelized simulators.

rank 0

pipe

Producer

Bu er Bu er Bu er Bu er

Consumer Consumer Consumer Consumer Consumer

SimulatorSimulatorSimulatorSimulatorSimulator

Search Engine

Fig. 2. The internal design of the scheduler module. Each rounded rectangle corre-
sponds to a process. The shaded area denotes the scheduler module, which is imple-
mented as MPI processes. The producer, which is a rank 0 MPI process, communicates
with the search engine via bidirectional pipes. Tasks are distributed to buffers and then
sent to their producers. Each consumer spawns a simulator process as its subprocess.

We evaluated the performance of job scheduling for the following test cases:

case 1 (TC1). At the beginning of the job, we generate N tasks. Each task takes
t seconds, where t is drawn randomly from a uniform distribution [20, 30].

case 2 (TC2). At the beginning of the job, we generate N tasks, whose duration
t is drawn from a power law distribution of exponent −2 between tmin = 5
and tmax = 100 s.

CARAVAN: A Framework for Comprehensive Simulations 137

case 3 (TC3). At the beginning of the job, we generate N/4 tasks. When
each task is complete, another task is created until the total number of tasks
reaches N . The duration of each task t is drawn randomly from a power law
distribution of exponent −2 between tmin = 5 and tmax = 100 s.

TC1 corresponds to the case in which the variation in task durations is not
large. This is the easiest among the three cases because its load balancing is
trivial. TC2 is more complicated because the distribution of the task durations
has a heavy tail. The majority of the jobs are complete in less than 10 s; however,
there are a certain number of tasks that run for significantly longer durations.
TC3 is even more complicated because all tasks are not generated initially. Tasks
are appended after the jobs are complete. We test this case because we often
need to determine the parameter space to be explored depending on the results
of previous tasks. For these tests, we generated dummy tasks, each of which slept
for a given period of time.

 0

 20

 40

 60

 80

 100

256 1024 4096 16384

fil
lin

g
ra

te
 (

%
)

number of processes

TC1
TC2
TC3

Fig. 3. Performance of the CARAVAN for the three test cases on the K computer.
The job filling rates for TC1, TC2, and TC3 are depicted for several numbers of MPI
processes.

We evaluated these test cases on the K computer using Np = 256, 1024, 4096,
and 16384 MPI processes. The number of nodes used in these tests was Np/8
because a node of the K computer has eight cores and the tests were conducted
as flat-MPI jobs. We used N = 100Np; hence, each MPI process had 100 tasks,
on average. We evaluated the performance using the job filling rate r, which we
define as

138 Y. Murase et al.

r =

∑N
i

(
tendi − tbegini

)

T ∗ Np
, (1)

where tendi and tbegini are the times at which the ith task begins and ends, respec-
tively. Total job duration T is defined as the interval between the beginning of
the first task and end of the last task, that is, T = max{tendi } − min{tbegini }.
The job filling rate is an indicator of the equal load balancing and the cost of
inter-process communications. If the communication cost is negligible and the
load is perfectly balanced, the job filling rate should reach 100%. The results of
the performance evaluation on the K computer are shown in Fig. 3. As shown in
the figure, the job filling rates for the three test cases were reasonably close to
the optimum, which demonstrates ideal scaling up to this scale.

4 Application to Multi-agent Simulation

4.1 Searching Trade-Off Relationships in Evacuation Planning

Designing a response plan to disasters is not a simple optimization problem. For
example, when designing an evacuation plan for residents, we need to optimize
its effectiveness (e.g. duration to complete the evacuation) while taking into
account its feasibility and cost. Even a highly effective plan cannot be adopted
when it requires an infeasible cost to be implemented. There often exist trade-
offs between these factors; thus, planning a disaster response can be formulated
as a multi-objective optimization problem.

In this section, as a case study, we investigate the trade-off relationships of
evacuation plans for a flood caused by a tsunami in a district in Japan. We
use a multi-objective evolutionary algorithm (MOEA) [9] to locate the Pareto
front in three-dimensional space of the effectiveness, cost, and feasibility, where
these values for each plan are estimated using a MASS. (Details of the objective
functions are provided later.) An MOEA is implemented on CARAVAN because
it requires many simulation runs with various evacuation plans.

4.2 Multi-objective Optimization Algorithm

Multi-objective optimization involves optimizing more than one objective func-
tion simultaneously, where a number of Pareto optimal solutions exist in general.
It is formulated as

min (f1(x), f2(x), . . . , fk(x)) , (2)

where k is the number of objective functions and fi is the ith objective function
of a set of variables, x. An MOEA is a variant of the evolutionary algorithm
for multi-objective optimization problems, which repeats (1) parent selection,
(2) crossover, (3) mutation, and (4) deletion to update the population. In this
cycle, the MOEA retains good solutions in the previous generation as archived

CARAVAN: A Framework for Comprehensive Simulations 139

solutions. We adopt one of the most standard methods of an MOEA, the elitist
non-dominated sorting genetic algorithm NSGA-II [8].

In the conventional NSGA-II, a population update is performed after the
objective functions for all the individuals in the population have been calculated,
that is, after multi-agent simulations that correspond to all individual cases are
completed in our case. Although we can evaluate objective functions in parallel
using HPCs, a naive implementation of NSGA-II may cause serious performance
degradation. This is because the times required to run simulations for these
individual cases may be widely different. If we wait for the completion of the
calculations for all individuals, a significant amount of CPU resource is wasted
because of the serious load imbalance.

To overcome this problem, we introduce an asynchronous generation-update
method to NSGA-II. In our algorithm, we update a subset of the population
when a certain fraction of the calculations are complete without waiting for all
the simulation runs to be completed. More specifically, we prepare Pini individ-
uals at the beginning and start calculations for them. When the calculations
for Pn (< Pini) individuals are complete, they are added to the set of archived
individuals. Based on the results of the archived individuals, Pn offspring are
newly generated and calculations for them are started. This replacement of Pn

individuals is defined as a single generation, and we repeat this process for a
given number of generations. When Pn newly complete individuals are added to
the archived individuals, we keep only the top Parchive individuals selected using
tournament selection on the set of archived individuals. Out of the archived
individuals, Pn individuals are newly generated every generation. By introduc-
ing asynchronous updates, we can achieve a high-performance using a massive
parallel computer.

In our study, Pini = 1000, Pn = 500, and Parchive = 1000 were used. For
each individual (i.e. input parameters of the simulator), we conducted five inde-
pendent runs that had a different random number seed, and their results were
averaged. Simulated binary crossover [12] and polynomial mutation [9] were used
as genetic operators. For the tournament selection parameters, a crossover rate of
1.0, simulated binary crossover of ηb = 15, mutation rate of 0.01, and polynomial
mutation of ηp = 20 were used.

4.3 Evacuation Simulator

To evaluate an evacuation plan, we used a multi-agent simulator Crowd-
Walk [10,11], which simulates the moves of pedestrians in a city. The simulator
adopts one-dimensional roads on which agents move; that is, the road network
is represented by nodes and links. This design is advantageous for making sim-
ulations sufficiently fast to manage a large number of agents.

In this study, we simulated the evacuation of pedestrians in the Yodogawa
district in Osaka, Japan. The road network had 2,933 nodes and 8,924 links. In
our setting, the number of evacuees and shelters were 49,726 and 86, respectively.
Figure 4 shows a snapshot of the simulation in this study.

140 Y. Murase et al.

Fig. 4. Snapshot of one of the evacuation simulations conducted in this study. The
lines and green points indicate roads and agents, respectively. (Color figure online)

In our study, the entire simulation area were divided into 533 sub-areas.
Each sub-area had a given number of evacuees. The evacuees in each sub-area
were further divided into two groups in the ratio ri and 1 − ri, where i is an
index of the sub-areas. For each group, a shelter was assigned as an evacuation
destination. The ratios ri and destinations for each group are input parameters
that characterize an evacuation plan. Thus, we had 1,599 input parameters for
this simulation as {ri} and two destinations were assigned to each sub-area.
We fixed other simulation parameters (e.g., the speed of the pedestrians) for
simplicity.

We used the following three objective functions in this study:

f1: time to complete the evacuation
Required time until all the agents arrive at their designated shelter. This is
obtained from the simulation.

f2: complexity of the evacuation plan
We quantify the difficulty of the evacuation plan using the information
entropy of the population distribution in each sub-area:
f2 =

∑
i (ri log (ri) + (1 − ri) log (1 − ri)). If we do not split the residents in

a sub-area into smaller groups, the evacuation plan becomes simpler. Thus,
smaller entropy indicates a simpler evacuation plan. This quantity is calcu-
lated when an evacuation plan is given.

CARAVAN: A Framework for Comprehensive Simulations 141

f3: number of excess evacuees
This is a measure of the feasibility of a plan. Each shelter has a capacity,
and the number of excess evacuees are measured. This quantity is calculated
when an evacuation plan is given.

Solutions that minimize these objective functions were searched using NSGA-II.

4.4 Results and Discussion

We conducted an optimization on the K computer using 640 nodes and 5,120
CPU cores. The population was updated for 40 generations, and 105, 000 sim-
ulation runs were conducted in total. Even though the elapsed time for each
simulation run ranged significantly from 30 min to 50 min, depending on the
simulation parameters, most of the simulation runs were conducted in paral-
lel and their job balancing was good. The job filling rate achieved 93% in our
experiment.

f1

0 500 1000 1500 2000

−0.48
70

00
75

00
80

00
85

00
90

00

−0.21

0
50

0
10

00
15

00
20

00 f2

−0.50

7000 7500 8000 8500 9000 0 4000 8000 12000

0
40

00
80

00
12

00
0

f3

Fig. 5. Solutions obtained after 40 generations. In the left bottom panels, the solutions
are shown in scatter plots, whereas their correlation coefficients are shown in the top
right panels. In the diagonal panels, the histograms of the solution as a function of f1,
f2, and f3 are shown.

142 Y. Murase et al.

Figure 5 shows the solutions determined after 40 generations. In the left bot-
tom panels of Fig. 5, scatter plots of the solutions on the Pareto front are shown.
Although they actually exist in three-dimensional space, they are mapped into
two-dimensional spaces in these plots. Clearly, there are negative correlations
between a pair of the objective functions. Their Pearson’s correlation coeffi-
cients were calculated and are shown in the upper right panels. In the diagonal
panels, the histograms of the solutions are shown. The correlation coefficients
are negative, which indicates that there are trade-offs between these objective
functions. For instance, if we want to shorten the time for evacuation, a complex
plan is needed.

5 Conclusions and Future Work

In this paper, we presented CARAVAN, a highly scalable framework for
parameter-space exploration, which executes independent simulation runs in par-
allel on massive parallel computers. Users can define a workflow using Python
without any knowledge of MPI libraries, and the simulator can be implemented
in an arbitrary language. We evaluated the performance on the K computer and
showed that it demonstrated good scaling for up to 16, 384 MPI processes.

As a case study, we applied the framework to an evacuation guidance prob-
lem. When evaluating evacuation plans for a disaster scenario, there often exists
a trade-off between the effectiveness and its implementation cost. We demon-
strated that CARAVAN is effective for solving this multi-objective optimization
problem because it requires a large number of evaluations of plans using multi-
agent simulations.

CARAVAN is an ongoing project, and its performance and usability will be
improved in future releases. In addition to these improvements, more studies
on algorithms for search engines in massive parallel environments are strongly
needed. Most of the well-known algorithms for the design of experiments or
optimizations assume the serial calculation of an objective function. However, in
our case, calculations of objective functions, that is, executions of a simulator, are
conducted on highly parallel machines. Effective algorithms for such a condition
are expected to maximize the potential of MASS and HPCs.

Acknowledgement. Y.M. acknowledges support from MEXT as “Exploratory Chal-
lenges on Post-K computer (Studies of multi-level spatiotemporal simulation of socioe-
conomic phenomena)” and the Japan Society for the Promotion of Science (JSPS)
(JSPS KAKENHI; grant no. 18H03621). This research used computational resources
of the K computer provided by the RIKEN Center for Computational Science through
the HPCI System Research project (Project ID: hp160264). We thank Maxine Gar-
cia, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this
manuscript.

www.edanzediting.com

CARAVAN: A Framework for Comprehensive Simulations 143

References

1. Noda, I., et al.: Roadmap and research issues of multiagent social simulation using
high-performance computing. J. Comput. Soc. Sci. 1(1), 155–166 (2018)

2. Török, J., et al.: What big data tells: sampling the social network by communica-
tion channels. Phys. Rev. E 94(5), 052319 (2016)

3. Murase, Y., et al.: An open-source job management framework for parameter-space
exploration: OACIS. J. Phys. Conf. Ser. 921, 012001 (2017)

4. Murase, Y., et al.: A tool for parameter-space exploration. Phys. Procedia 57,
73–76 (2014)

5. http://github.com/crest-cassia/caravan
6. http://x10-lang.org/
7. Matsuda, M., et al.: K MapReduce: a scalable tool for data-processing and

search/ensemble applications on large-scale supercomputers. In: IEEE Cluster
Computing (CLUSTER) (2013)

8. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.)
PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45356-3 83

9. Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. Wiley,
Chichester (2001)

10. Yamashita, T., Okada, T., Noda, I.: Implementation of simulation environment
for exhaustive analysis of huge-scale pedestrian flow. SICE JCMSI 6(2), 137–146
(2013)

11. Yamashita, T., Soeda, S., Onishi, M., Noda, I.: Development and application of
high-speed evacuation simulator with one-dimensional pedestrian model. J. Inform.
Process. Soc. Japan 53(7), 1732–1744 (2012)

12. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Syst. 9(2), 115–148 (1995)

http://github.com/crest-cassia/caravan
http://x10-lang.org/
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1007/3-540-45356-3_83

BASIC: Towards a Blockchained
Agent-Based SImulator for Cities

Luana Marrocco1, Eduardo Castelló Ferrer2, Antonio Bucchiarone3(B),
Arnaud Grignard2, Luis Alonso2, Kent Larson2, and Alex ‘Sandy’ Pentland2

1 Ecole polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
lumarroc@ulb.ac.be

2 MIT Media Lab, Massaschusetts Institute of Technology,
Cambridge, MA 02139, USA

{ecstll,agrignar,alonsolp,kll}@media.mit.edu, pentland@mit.edu
3 Fondazione Bruno Kessler, Via Sommarive, 18, Trento, Italy

bucchiarone@fbk.eu

Abstract. Autonomous Vehicles (AVs), drones and robots will revolu-
tionize our way of travelling and understanding urban space. In order to
operate, all of these devices are expected to collect and analyze a lot of
sensitive data about our daily activities. However, current operational
models for these devices have extensively relied on centralized models
of managing these data. The security of these models unveiled signifi-
cant issues. This paper proposes BASIC, the Blockchained Agent-based
Simulator for Cities. This tool aims to verify the feasibility of the use
of blockchain in simulated urban scenarios by considering the commu-
nication between agents through smart contracts. In order to test the
proposed tool, we implemented a car-sharing model within the city of
Cambridge (Massachusetts, USA). In this research, the relevant litera-
ture was explored, new methods were developed and different solutions
were designed and tested. Finally, conclusions about the feasibility of the
combination between blockchain technology and agent-based simulations
were drawn.

Keywords: Blockchain · Smart contracts · Autonomous Vehicles ·
Data privacy · Multi-agent based simulation · Smart urban mobility

1 Introduction

In less than 50 years, the global urban population increased from 33 to 54%1,
making the economy of several countries concentrate in cities instead of being
uniformly distributed. This drastically influenced the activity inside of the urban
area, which highly impacts congestion, accidents and air pollution [1]. The most
important source of exposure to pollution for humans is created by road vehicles

1 https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS.

c© Springer Nature Switzerland AG 2019
D. Lin et al. (Eds.): MMAS 2018, LNAI 11422, pp. 144–162, 2019.
https://doi.org/10.1007/978-3-030-20937-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20937-7_10&domain=pdf
https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS.
https://doi.org/10.1007/978-3-030-20937-7_10

BASIC: Towards a Blockchained Agent-Based SImulator for Cities 145

and there already have been some attempts to estimate the impact of the pollu-
tion by changing from car to bicycle journeys [2]. Moreover, because of the high
density of cities and the limited space that is available to parking, cars become
an unsustainable mode of transportation [3] even if it can be more convenient in
term of flexibility, celerity and comfort. In [4], it was showed that during the peak
commuting hours, travel delays increased by 41%, making people more stressed
in their life. Moreover, correlation was for example found between depression
and traffic noise by analyzing a part of the population of Frankfurt international
airport [5].

Cities are changing and urban planning became a new challenge for the world.
In response to this, different tools like CityScope [6] developed by the CityScience
group at MIT Media Lab were created in order to assist novel urban processes
and help to visualize and understand complex urban data and interact with it
by simulating modifications within the urban scenario. This type of tools help
us to understand the urban impact of new technologies in our lives.

Modern cities attempt to flexibly integrate transportation options for resi-
dents and visitors to use buses, trains, taxis, bicycles and cars. They play an
important role in the economy of the city and the quality of life of its resi-
dents. The inadequacy of traditional transportation models is proven by the
growth of alternative and social initiatives aiming at a more flexible, customized
and collective way of transport. To be collective, a mobility service should offer
a way to organize teams of citizens that need to reach equal or closed desti-
nations starting from different locations. In this context, new kinds of trans-
portation are proposed to citizens like Mobility-on-Demand and ride-sharing
transportation [7]. By using shared mobility, the notion of owning a car, using
it for personal transportation and leaving it in a parking disappears and gives
way to the notion of requesting and splitting a service only when it’s needed.
A lot of different studies aimed to quantify the impact of car sharing on car
ownership and CO2 emission [8,9], proving that this mobility actually decreases
the congestion and those emissions.

In order to go even further in the congestion reduction and the mobility
paradigm change, new technologies like Autonomous Vehicles (AV) were pro-
posed because they have the potential to impact on vehicle safety, travel behavior
and flow distribution [10]. These vehicles are not totally accepted yet in urban
areas because some modifications in the legislation are still needed [11], but new
methods are currently investigated and developed to make these vehicles more
efficient in data analyzing and decision making [12]. While the National High-
way Traffic Safety Administration (NHTSA) statistics tell us that human error
is the main reason of road crashes, AVs allows users to enjoy their mobility by
reducing the time that they have to monitor the dangers of the road [13]. In
an ideal world, it seems that this technology only needs time to be accepted
as a regular mode of transportation as well as bus, tram or subway. However,
despite all these advantages, some barriers still remain and are the major drag
for citizens and users.

146 L. Marrocco et al.

Despite the fact that personalized services can be proposed to users by ana-
lyzing their personal information, the question of data privacy is becoming more
and more relevant with new technologies [14]. According to the literature, 20% of
the world’s data was collected during this last couple of years [15] and people are
starting to understand that these data actually have a real economic value [16].
Nowadays, the most common way to store and access this data is to use cen-
tralized databases [17]. However, this centralization encounters more and more
issues. First, since the server is the entity that can provide the service, if it stops,
the entire system will paralyze. The users will thus not be able to access to the
service during the failure time. Second, there is the problem of data privacy. In
most cases, all data remain unencrypted, therefore, the entity who has it in its
possession can breach the privacy of users [18]. Finally, these databases can be
easily modified at the server side, which means that the producers (i.e., users)
of the data don’t have any control over it and don’t know how it is being used
[19,20].

One of the most promising technologies to tackle both problems of data
centralization and privacy is blockchain. More than a mean for exchanging cryp-
tocurrencies without intermediaries, blockchain technology is starting to intro-
duce different methods in order to achieve a secure and accountable way to share
data. For instance, [21] outlined a framework for sharing machine learning mod-
els between hospitals, [22] described a method to manage byzantine agents in
a swarms of robots, [23] introduced a secure architecture for Internet of things
(IoT), and [24] proposed a scoring protocol for autonomous systems to increase
their reputation. Complementarily, the urban mobility and smart cities fields
are also paying an increasing amount of attention to this evolution. In fact, in
order to achieve efficient urban mobility models and smarter cities data needs to
be collected and processed to improve urban processes. This concern has driven
recent works where the problem of communication among AVs was explored [25],
by using a blockchain-based solution.

In response to these concerns, this work addresses the use of blockchain in
the urban mobility and smart cities fields by proposing a data-sharing frame-
work among different agents based on smart contracts. BASIC (Blockchained
Agent-based SImulator for Cities) aims to combine an agent-based simulator
with blockchain technology in order to conduct research on urban scenarios where
data are involved and needs to securely shared. The potential of this framework
is illustrated in a car-sharing service where a non-negligible number of personal
data is usually collected about users with the current proposed applications.
The following sections are structured as follow. Section 2 describes background
notions of the simulator and the blockchain technologies used in the framework
proposed. Section 3 presents the architecture of the framework and the different
parts involved in it and how they interact together. Section 4 describes the results
of using the proposed tool in a car-sharing scenario. Finally, Sect. 5 concludes
this paper with the discussion and the future work of this simulator.

BASIC: Towards a Blockchained Agent-Based SImulator for Cities 147

2 Background

2.1 Car-Sharing Scenario

Today, a new kind of mobility is emerging, with the aim of making our city
smarter and more connected. Congestion control, autonomy of users, environ-
mental impact and reduction of accidents are several reasons that motivate the
use of Autonomous Vehicles (AVs) in urban areas. However, this new kind of
mobility needs to be protected, controlled, and managed. For this purpose, we
tested BASIC in a car-sharing scenario in the city of Cambridge (MA, USA),
where simulated users and AVs interact. When users need to move around the
city, they can request an AV, then, the system forms a group, sends the corre-
spondent AV to users’ pick-up points and finally drops them off. BASIC adds a
blockchain component to achieve a secure data-sharing approach between users
and AVs. BASIC should thus be able to support that kind of infrastructure and
should also be stable when the number of AVs and users increase. Finally, all
AVs and users have to be connected in order to avoid desynchronization issues.

2.2 Agent-Based Simulation

BASIC is based on a generic existing ABM model [26] design to be easily cus-
tomized for more specific applications [27]. The ABM model is developed using
Gama Platform [28]2. GAMA allows to model and simulate spatially explicit
agent-based simulations where real-world maps, streets, buildings, etc. are inte-
grated by using GIS data. Moreover, different types of agents can be programmed
each one with their own behavior and attributes. The behavior of each agent is
supported by functions, which can represent reflexes (automatically called every
step) or actions (executed when another part of the code calls it). To realize the
motivating scenario, two agent species were coded. First, users were developed
in order to recreate the daily activity of citizens moving from one starting loca-
tion to a certain destination. Second, AVs were developed in order to wander
around the urban area and fulfill the car-sharing application. The behavior of
both species is explained with more details in Sect. 3.1.

2.3 Blockchain and Smart Contracts

The most famous application of blockchain is Bitcoin3. Bitcoin is a cryptocur-
rency introduced in 2008 and the idea behind it is to create a new way to make
transactions between peers without a third party in a transparent and secure
way. In order to send a transaction from one user to another, a peer-to-peer
network is used, which allows to delete the central unit from the process.

The blockchain can be seen as a incorruptible ledger of transactions that is
decentralized since the information held on it is duplicated in each one of the

2 http://www.gama-platform.org/.
3 https://bitcoin.org/.

http://www.gama-platform.org/
https://bitcoin.org/

148 L. Marrocco et al.

different computers (nodes) of the peer-to-peer network. In order to add transac-
tions in the blockchain, every nodes must verify and validate the content of the
block. This technology allows thus to create trust between agents who don’t trust
in each other. Each block is composed by transactions. In each transaction, we
can find the sender, the receiver, the amount but also additional information can
be added. Transactions are made from one address to another. Only nodes with
access to the private key of the corresponding address can make a transaction
from this address (in other words, if you don’t have the secret key of the address
A, you will not be able to send a transaction from address A). In addition to
transactions, each block contains information about previous blocks. Blocks are
thus linked in a chain. Therefore, if the content of the previous block changes
(for example, if someone tries to attack the system by modifying a block), the
value of this information will also change and will create an inconsistency in the
blockchain. For this reason, when something is written in the blockchain, it is
very difficult to modify it.

A genesis block4 is created as the starting point of the configuration of the
chain. With this block for instance, it is possible to initialize accounts with some
amount of cryptocurrency inside. This method is useful to generate tokens in
the system, and can only be used when the blockchain system is in the design
phase. A second way to generate tokens in the system is mining. In order to
validate blocks in the blockchain, the content of the block must be first verified.
This is the role of miners. Miners are nodes of the network. The goal of them, as
we just said previously, is to verify and add blocks at the end of the blockchain.
To do so, they have to compete with each other. In fact, in order to validate
a block, a computational problem needs first to be solved by miners. The first
miner who solves it is considered the winner and can add his block at the end of
the blockchain. When a miner succeeds, he is rewarded with a certain amount
of cryptocurrency (Ether5 in case of using the Ethereum blockchain).

In our approach, the Ethereum6 blockchain is used. The ethereum plat-
form provides the additional capability of deploying smart contracts7 in the
blockchain. The advantage of smart contracts is that Turing-complete code can
be added to the blockchain. Due to this functionality, more elaborated and
autonomous operations beyond sending and receiving transactions are possible.
A smart contract can be seen as a digital contract with rules and conditions.
This code is thus composed by variables and functions and is deployed within a
certain address in the blockchain. Each node of the network has the possibility
to interact with the smart contract in a peer-to-peer way. First, interacting with
the contract implies to call one of its functions. However, such operation is costly
since the user needs to register a transaction in the blockchain. Second, when
interacting with the smart contract the content of this interaction stays secret
and it is held by the smart contract, however, the proof that this interaction took

4 https://en.bitcoin.it/wiki/Genesis block.
5 https://www.ethereum.org/ether.
6 https://www.ethereum.org/.
7 https://en.wikipedia.org/wiki/Smart contract.

https://en.bitcoin.it/wiki/Genesis_block
https://www.ethereum.org/ether
https://www.ethereum.org/
https://en.wikipedia.org/wiki/Smart_contract.

BASIC: Towards a Blockchained Agent-Based SImulator for Cities 149

contract AskingCar {

struct Transaction{

bytes32 idTransaction;

bytes32 idPassenger;

bytes32 idCar;

...

}

string private idCar;

mapping (bytes32 => Transaction) private transactions;

bytes32 [] private idsTransaction;

/* Constructor of the contract */

function AskingCar(string id) public {

idCar = id;

}

/* Function that will add the info of the passenger */

function addTransactionInfo(bytes32 idTrans , bytes32

idPass , bytes32 idCar , bytes32 start , bytes32 end ,

int hour){

var transaction = transactions[idTrans];

transaction.idTransaction = idTrans;

transaction.idPassenger = idPass;

transaction.idCar = idCar;

...

}

/* Function that will add the end hour of

the drive when the drive is finished

*/

function addEndHour(bytes32 idTransaction , int endHour){

if(validTransaction(idTransaction)){

transactions[idTransaction]. endHour = endHour;

}

}

/*Check if the transaction is assigned to this contract */

function validTransaction(bytes32 idTrans) view public

returns (bool) {

for(uint i = 0; i < idsTransaction.length; i++) {

if (idsTransaction[i] == idTrans) {

return true;

}

}

return false;

}

}

Fig. 1. Smart contract used when a user needs an AV.

150 L. Marrocco et al.

place is stored in the blockchain and remains public to its participants. Figure 1
shows a portion of a smart contract, implemented in each AV. It is composed
by two main functions: addTransactionInfo, used to add info related to the
user that needs an AV, and addEndHour, used to add the end hour of the
journey when the user reaches her/his destination.

In this research, the ethereum network was simulated by using Docker8.
Docker provides container-based virtualization and allows to build networks of
agents running specific software in an easy way. The code used to build the con-
tainers and the simulations described in this research is publicly available in the
following github repository9.

3 The BASIC Architecture

In order to provide a modular framework that can be customized for different
urban applications, BASIC’s architecture has been specified and is composed by
different layers, defined one above the other. A graphical representation of this
stack is shown in Fig. 2. In the following sections we give a description of each
layer with the aim of giving details on how the BASIC framework works.

Fig. 2. Multilayer decomposition of BASIC (from bottom to top). First, the data layer
represents the actual data used in order to simulate a realistic urban scenario (popu-
lation information, GIS files, etc). With these data, we were able to build the second
layer; the simulation layer was implemented using GAMA which provided different
agents such as AVs and users. Third, the blockchain layer creates the infrastructure for
the data management in the system. Four, the planner layer aims to guide the system
by helping the routing and decision making processes. Finally, the analysis layer sheds
some light about the feasibility of the proposed approach.

8 https://www.docker.com/.
9 https://github.com/agrignard/Basic.git.

https://www.docker.com/
https://github.com/agrignard/Basic.git

BASIC: Towards a Blockchained Agent-Based SImulator for Cities 151

3.1 Data and Simulation Layers

The Data Layer of the BASIC architecture has the objective of creating a
virtual environment that replicates a realistic urban scenario.

Fig. 3. Simulation of AVs (green triangles) and users (blue dots) in the Kendall urban
area, in Cambridge (MA, USA). Two zones are depicted: the residential zone (A) where
users live and the working zone (B) where users work. The number of users and AVs
were adjusted in the image in order to increase readability. (Color figure online)

The Simulation Layer is an extension of the CityScope framework pro-
posed in [26] where buildings, roads and citizens have been already modeled and
formed the starting point of our simulations. GIS files have been used in order to
replicate the environment and allow us to have a representation of the Kendall
area in Cambridge (MA, USA). On top of this, two types of agents have been
specified:

Users. These agents represent citizens of the Kendall area. In this simulation,
a simple behavior was implemented (see the User Model in Fig. 5). Each user
is assigned to a residential (A) and a working (B) zone (see Fig. 3). The only

152 L. Marrocco et al.

possibility for the user to go between these two zones is to use an AV. All users
are located in zone A when the simulation starts. Then, during the morning
hours (i.e., 6–9 AM), at a random point in time, they go to work. After this,
during the afternoon hours (i.e., 5–8 PM), at a random point in time, all users
leave the working zone to return to the residential zone.

Autonomous Vehicles (AVs). The second class of agents of this system are
autonomous vehicles. The unique role of them is to respond to the request of users
around the city. Initially, they wander around the map performing a random walk
until they receive a user request (see the AV Model in Fig. 6).

As mentioned previously, two types of zones are represented in the simulation.
First, we can identify a residential zone (zone [A] in Fig. 3). This zone is composed
by houses and apartments. In contrast, the working zone (zone [B] Fig. 3) is
composed of company offices and educational institutions.

3.2 Blockchain Layer

This section explains how the blockchain layer is built and how it interacts
with its previous layer. Figure 4 represents this connection that we describe in
the following steps:

Fig. 4. Process flow of a request of a AV from a user. The starting point is the agent-
based simulation. When a user needs an AVs, a transaction is created and sent to the
Docker container trough a Python interface. Finally, the container will interact with
the blockchain in order to add the transaction in it.

BASIC: Towards a Blockchained Agent-Based SImulator for Cities 153

species User skills :[moving]{

building home;

building work;

AV myAV <- nil;

bool waitingForCar <- false;

...

action movement(building start , building end){

if(currentTransaction = nil){

do createAndAddTransaction(start , end);

waitTime <- step*cycle;

}

if(myAV = nil){

askingForCar <- true;

if(inAGroup = false){

copassengers <- findPeople ();

if(length(copassengers) > 1 or (step*

cycle - waitTime) > maxWaitTime){

.....

}

}

}

if(inAGroup = true and myAV = nil){

do findCarAndUpdateGroup;

}

......

}

action findCarAndUpdateGroup{

do askAV;

loop user over: copassengers{

user.myAV <- self.myAV;

}

ask myAV{

do addPassengers(myself.copassengers);

}

}

AV askAV{

freeAVs <- AV where(each.isFree = true);

myAV <- freeAVs closest_to(self);

return myAV;

}

....

}

Fig. 5. User model.

154 L. Marrocco et al.

species AV skills :[moving , network]{

list <point > startPoints <- [];

list <point > endPoints <- [];

list <User > passengers <- [];

...

action dropOff(User user){

(user.currentTransaction).endHour <- currentHour;

ask user{

ask userClient{

string info <- myself.currentTransaction.

getStringEndHour ();

do sendMessage("User;addEndHour;","User",

myself.name , info);

}

}

...

}

action addPassengers(list <User > users){

isFree <- false;

self.passengers <- users;

loop user over: users{

add user.location to: startPoints;

if(user.nextObjective = "home"){

add any_point_in(user.home) to: endPoints;

}

else{

add any_point_in(user.work) to: endPoints;

}

}

objective <- "pickUp";

}

}

Fig. 6. Autonomous Vehicle (AV) model.

1 Agent-based simulation. This simulation is composed by AVs and users.
Each AV is associated to a mining node in the network and deploys its own
smart contract (as shown in Fig. 1). Each user is associated to a wallet in the
blockchain with a certain amount of ether pre-filled.

2 Order of an AV. When it’s time to move from home to work (or vice-versa),
the user needs to order a AV. Due to the interaction with the car-sharing
algorithm explained in the next section, a AV is assigned to the user.

3 Sending request to the Python server. First, a TCP connection is made
between GAMA and a Python script. Each user is connected to this code
which acts as a client interface. This script acts as an interface between the
simulation internals and an external system such as the blockchain. Finally,
when an AV is assigned to the user (output of step 2), the same user sends

BASIC: Towards a Blockchained Agent-Based SImulator for Cities 155

a message through this interface with the address of the smart contract to
query (i.e., the one of the requested AV).

4 Connection to the Docker Container. To connect with docker, a Docker
API10 is used for the Python language. By using this API, we developed
a Python client connected to Docker. Due to this connection, it is possible
to enter inside the container and launch code (i.e. script for deploying or
querying a contract). For the purpose of this work, we deployed a private
blockchain composed of a network docker nodes. Each nodes is associated to
one AV and runs geth inside.

5 Adding the transaction in the Blockchain. The last step of the work-
flow is to add the transaction in the blockchain. To this end, the web3-eth
JavaScript API11 is used. This API allows to run geth12 commands inside of
a JavaScript script, which is useful in order to interface with ethereum nodes
inside the Docker container (as explained at step 4). By using the Javascript
API and a network of interconnected geth nodes, the transaction can thus be
sent and added to the network.

3.3 Planner Layer

As mentioned before, the planner layer aims to coordinate the fleet of AVs
in order to pick up and drop off users. For this purpose, a simple car-sharing
model that aggregates users into groups is depicted in Fig. 7.

Fig. 7. Workflow of the planner layer. Step 1 consists to change the internal state of
the user. By changing this variable, the system knows that this specific user needs an
AV. Step 2 is the grouping phase. A car-sharing algorithm will take into account all
users that need an AV in order to make groups. Finally, step 3 is route operation phase.
Now that a group is formed, the assigned AV is sent to this group in order to pick users
up and drop them off.

10 https://docker-py.readthedocs.io/en/stable/client.html.
11 https://web3js.readthedocs.io/en/1.0/web3-eth.html.
12 https://github.com/ethereum/go-ethereum/wiki/geth.

https://docker-py.readthedocs.io/en/stable/client.html
https://web3js.readthedocs.io/en/1.0/web3-eth.html
https://github.com/ethereum/go-ethereum/wiki/geth

156 L. Marrocco et al.

This algorithm is composed of 3 main steps:

1 Modification of the internal state of users. In the simulation, each user
has a variable which is modified when he/she needs to move. Thus, when a
user needs an AV, he/she will change the value of this variable first. This
change of internal state takes place at a random point in time during the
morning/afternoon shifts explained in Sect. 3.1.

Algorithm 1. Formation of group for the planner layer.
1: for user in userWithChangedState do
2: group ← emptyList
3: add user in group
4: remove user from userWithChangedState
5: while user.waintingTime < maxTime AND group.length = 1 do
6: for other in userWithChangedState do
7: if group.length < 5 AND dist(user.start,other.start) < ThresholdStart

AND dist(user.stop,other.stop) < ThresholdStop then
8: add other in group
9: remove other from userWithChangedState

10: end if
11: end for
12: end while
13: end for

2 Formation of a group. The next step is the creation of groups. This pro-
cess is described in Algorithm 1. In line 1, we can see that this algorithm is
executed for each user with a changed state (the state is changed when a user
needs an AV). A group will be assigned to this user and the idea is to add
other users in this group. To do so, the block (from line 5 to 12) is executed.
However, there are two conditions for the execution of this part. First, a limit
of time is expressed in line 5. In fact, if a user is looking for a group but
no one fits in this group, he will be able to take an AV. Second, when the
group is composed of more than one user (the initial one), there is no need
to execute again this loop.
Inside this block, the formation of a group is done as follows: Every other
users will be taken into account (as shown in line 6), and if he meets some
condition, he is added to the group. These users need to be within a threshold
distance (ThresholdStart) from each other. Moreover, these user’s destina-
tions need to be in a place within a certain distance (ThresholdStop) from
each other. This is represented in line 7.

3 Route Operation. If the conditions are met, a group is formed and the
closest AV is assigned to the group. This AV picks up and drops off users
by always going to the closest stop. If it is not possible to form a group, a
maximum waiting time (line 5) was included to prevent lockout periods. If,
after this time, the algorithm doesn’t find any group, an AV is assigned to a
single user as it was explained before.

BASIC: Towards a Blockchained Agent-Based SImulator for Cities 157

4 Experiment, Results and Analysis

This section describes the last layer of the BASIC system architecture: the
Analysis Layer. As described previously, during the experimental phase of
this framework, the feasibility of the integration of blockchain in urban scenario
was tested by implementing a car-sharing model. This model focused on the
population that uses car and ride-sharing to go work. Some parameters were
fixed during the experiments and are explained below:

– Number of AVs. In our system, the number of vehicles available in the city
was fixed at ten. Because each car is a node of the blockchain network, we have
thus ten mining nodes in the system. The first idea was to test the tool and
its feasibility with a small amount of AVs. After doing that, extrapolations
will be used to draw conclusions about the scalability of the system.

– Period of time. During these experiments, we analyze the behaviour of the
simulation representing seven days (one week). Each day is the same and the
agents have the same behaviour (i.e., go to work and go back home).

– Distance thresholds for the grouping phase. During the grouping phase,
the distance between starting points of users was fixed to one kilometer. The
exact same value was fixed for the ending points of users.

– Maximum waiting time. During the grouping phase, it was decided to put
a limit on the time that a user can spend for finding a group. This limit was
fixed at 15 min.

– Difficulty of the blockchain. The difficulty fixes the time needed to mine
a block and therefore include new transactions. A too high difficulty value
could provoke a slow-down of the system while a too low difficulty value might
impact the security of the system. Therefore, in the experiments conducted
in the research, we decided to fix the difficulty level.

– Gas used. When a transaction is made in the blockchain, it implies to pay
a fee for the miner. Each user can choose the fee he/she would like to pay for
the transaction by tuning the gas parameter. If the user selects a high value
for the gas, the transaction will be mined faster. On the contrary, when the
value of gas is low, it might take more time for the transaction to be mined.
In this case, the gas was fixed at 25000000 for all transactions. This value
remained fixed throughout the experiments.

– Genesis block. In order to initialize the blockchain, a genesis block was
created. This genesis block contains accounts that were pre-filled with Ether.
For the experiments described in this work, ten accounts were initially created
and filled up with twenty Ether.

By using a blockchain solution for storing data, we know that a full copy
of the ledger is kept in all nodes (AVs). It is important to note that, even
though, recent literature suggests that storing data directly into the blockchain
might impact the scalability of the system leading to bloat [29], the aim of our
experiments is to analyze how much memory is needed in each AV according to
the number of users in the simulation and whether a realistic projection of these
requirements might exceed current state-of-the-art specifications in the AV field.

158 L. Marrocco et al.

Fig. 8. Amount of memory needed for one AV (node) after seven days of operation in
relation to the number of users in the simulation.

Figure 8 shows the amount of memory needed per node (AV) in relation to
the number of users active in the simulation. During this test, the number of
users was increased from one to twenty. This allowed us to see the evolution of
the memory needed per AV. Let’s remember that, each day, users need an AV
to go to work in the morning, and to come back home during the afternoon. The
AV is thus requested two times per day per user. The maximum number of users
in an AV is fixed at five, which also correlated to the maximum capacity for user
groups introduced in the previous section. According to Fig. 8, when the number
of users increase, the size of the blockchain also increases. This phenomenon
can be explained by the fact that the size of the blockchain is proportional to
the number of transactions. If more users are present in the system, more users
will need to travel and thus, more transactions will be created. Let’s remember
that the only way for users to move, is to use car-sharing. Everyday, each user
needs two AVs. However, each request for having an AV corresponds to two
transactions. The first transaction represents the request itself. Each user queries
the AV by providing all the needed information like the starting and destination
points, user address (public key), hour, etc. When the drive is completed, there
is the second transaction. The second transaction aims to validate the drive by
adding the ending hour when the user finally arrived at his destination point.
In conclusion, because users need to travel two times each day, four transactions
are added per user per day.

Let’s now analyze the memory needed for such a system. As we can see in
Fig. 9, after seven days, the size of the blockchain for this system when there is
20 users is 5.1 MB. This amount of data will be stored in each AV. By using this
information, we can extrapolate what will be the size of the blockchain after a
year. After 52 weeks, by making the assumption that this growth will be linear,
the size will be around 265 MB. Due to previous research [6], the population
in the Kendall area was roughly estimated to 10.000 people. Moreover, in 2016,
3.5% of the population in Cambridge (where Kendall belongs to) used carpooling

BASIC: Towards a Blockchained Agent-Based SImulator for Cities 159

as method of travel13. By using this, we can estimate the number of carpoolers
to 350. By making the same linear assumption than before and by considering
these 350 citizens, the amount of needed memory is thus 4641 MB (4.641 GB).
Today, storing that amount of data in an AV is feasible according to current AV
specifications.

5 Discussion and Future Work

During this work, we tested the feasibility of the combination between
blockchain, agent-based modelling, and urban mobility by proposing a tool
named BASIC. This tool was validated by implementing a car-sharing simu-
lation within the city of Cambridge (MA, USA). The blockchain component was
introduced in our work to store and share data among a distributed system
of AVs and users in order to avoid a centralized controlling entity. First, this
study suggests that the memory needed for each AV increased when the num-
ber of users increased. However, the simulation process was feasible and fully
operational with 30 agents (20 users and 10 cars).

Fig. 9. Extrapolation of the memory needed for one AV (node) with 20 users.

Today, mobility in urban areas is still a big challenge and it remains com-
plicated to test new infrastructures in real life. Due to BASIC, it is now possi-
ble to simulate different kinds of urban scenarios where agents interact with a
blockchain layer. In the future, other implementation works are possible in order
to increase the performance of the system. Improving the car-sharing algorithm
is a first idea and will allow to have less cars in the city. The impact on the traf-
fic will also be an interesting feature to analyze in this case. Since this research
suggests that storing the data in a decentralized way is feasible, continuing with

13 https://datausa.io/profile/geo/cambridge-ma/.

https://datausa.io/profile/geo/cambridge-ma/

160 L. Marrocco et al.

the idea of data privacy is an interesting direction to make citizens control their
own data. Along those lines, people are realizing the real economic value of their
data. Allowing them (by using the smart contract technology for example) to
choose who can see this information, for how long, and for what purposes, can be
another interesting next step that can be implemented by using BASIC. Finally,
since a modern city needs to flexibly integrate transportation options including
different means (i.e., cars, buses, trains, taxis, and bicycles), the combinatorial
complexity of all these possibilities negates the options of a single monolithic
control system. How would a grouping, or ensemble of hierarchies perform in
this situation? In the near future, we want to extend our approach to deal with
Collective Adaptive Systems (CAS) [30]14 able to emerge and continuous adapt
in a changing environment.

Acknowledgments. This project has received funding from the European Unions
Horizon 2020 research and innovation programme under the Marie Skodowska-Curie
grant agreement No. 751615.

References

1. Żak, J., Hadas, Y., Rossi, R. (eds.): Advanced Concepts, Methodologies and Tech-
nologies for Transportation and Logistics. AISC, vol. 572. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-57105-8

2. Johansson, C., et al.: Impacts on air pollution and health by changing commuting
from car to bicycle. Sci. Total Environ. 584–585, 55–63 (2017)

3. Fiedler, D., Certický, M., Alonso-Mora, J., Cáp, M.: The impact of rideshar-
ing in mobility-on-demand systems: simulation case study in Prague. CoRR,
abs/1807.03352 (2018)

4. Schrank, D., Eisele, B., Lomax, T., Bak, J.: Urban mobility scorecard. Technical
report, Texas A&M Transportation Institute (2015)

5. Seidler, A., et al.: Association between aircraft, road and railway traffic noise and
depression in a large case-control study based on secondary data. Environ. Res.
152, 263–271 (2017)

6. Alonso, L., et al.: CityScope: a data-driven interactive simulation tool for urban
design. Use case volpe. In: Morales, A.J., Gershenson, C., Braha, D., Minai, A.A.,
Bar-Yam, Y. (eds.) ICCS 2018. SPC, pp. 253–261. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96661-8 27

7. Chen, X., Zheng, H., Wang, Z., Chen, X.: Exploring impacts of on-demand
ridesplitting on mobility via real-world ridesourcing data and questionnaires.
Transportation, August 2018

8. Nijland, H., van Meerkerk, J.: Mobility and environmental impacts of car sharing
in the Netherlands. Environ. Innov. Societal Transit. 23, 84–91 (2017)

9. Giesel, F., Nobis, C.: The impact of carsharing on car ownership in German cities.
Transp. Res. Procedia 19, 215–224 (2016)

10. Fagnant, D.J., Kockelman, K.: Preparing a nation for autonomous vehicles: oppor-
tunities, barriers and policy recommendations. Transp. Res. Part A: Policy Pract.
77, 167–181 (2015)

14 http://www.focas.eu/manifesto/ - FoCAS Manifesto: A roadmap to the future of
Collective Adaptive Systems.

https://doi.org/10.1007/978-3-319-57105-8
https://doi.org/10.1007/978-3-319-96661-8_27
https://doi.org/10.1007/978-3-319-96661-8_27
http://www.focas.eu/manifesto/

BASIC: Towards a Blockchained Agent-Based SImulator for Cities 161

11. BBC New: Who is responsible for a driverless car accident? BBC News Online
(2015). http://www.bbc.com/news/technology-34475031

12. Millard-Ball, A.: Pedestrians, autonomous vehicles, and cities. J. Plann. Educ. Res.
38(1), 6–12 (2018)

13. Haboucha, C.J., Ishaq, R., Shiftan, Y.: User preferences regarding autonomous
vehicles. Transp. Res. Part C: Emerg. Technol. 78, 37–49 (2017)

14. Serra, M.: An exploratory paper of the privacy paradox in the age of big data and
emerging technologies. Master’s thesis, KTH, School of Electrical Engineering and
Computer Science (EECS) (2018)

15. Zyskind, G., Nathan, O., Pentland, A.: Decentralizing privacy: using blockchain to
protect personal data. In: 2015 IEEE Symposium on Security and Privacy Work-
shops, SPW 2015, San Jose, CA, USA, 21–22 May 2015, pp. 180–184 (2015)

16. Oyola, J.O., Hoffman, W., Schwab, K., Marcus, A., Luzi, M.: Personal data: the
emergence of a new asset class. In: An Initiative of the World Economic Forum
(2011)

17. Uber’s big data platform: 100+ petabytes with minute latency (2019). https://
eng.uber.com/uber-big-data-platform/

18. Former employees say Lyft staffers spied on passengers (2019). https://techcrunch.
com/2018/01/25/lyft-god-view/

19. Fan, L., Ramon Gil-Garcia, J., Werthmuller, D., Brian Burke, G., Hong, X.: Inves-
tigating blockchain as a data management tool for IoT devices in smart city ini-
tiatives. In: Proceedings of the 19th Annual International Conference on Digital
Government Research: Governance in the Data Age, DG.O 2018, pp. 100:1–100:2.
ACM, New York (2018)

20. Michelin, R.A., et al.: SpeedyChain: a framework for decoupling data from
blockchain for smart cities. In: Proceedings of the 15th EAI International Con-
ference on Mobile and Ubiquitous Systems: Computing, Networking and Services,
MobiQuitous 2018, New York City, NY, USA, 5–7 November 2018, pp. 145–154
(2018)

21. Castelló Ferrer, E., Rudovic, O., Hardjono, T., Pentland, A.: RoboChain: a secure
data-sharing framework for human-robot interaction. CoRR, abs/1802.04480
(2018)

22. Strobel, V., Ferrer, E.C., Dorigo, M.: Managing byzantine robots via blockchain
technology in a swarm robotics collective decision making scenario. In: Proceed-
ings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS 2018, Stockholm, Sweden, 10–15 July 2018, pp. 541–549 (2018)

23. Alphand, O., et al.: IoTChain: a blockchain security architecture for the Internet
of Things. In: WCNC, pp. 1–6. IEEE (2018)

24. Alowayed, Y., Canini, M., Marcos, P., Chiesa, M., Barcellos, M.P.: Picking a part-
ner: a fair blockchain based scoring protocol for autonomous systems. In: Proceed-
ings of the Applied Networking Research Workshop, ANRW 2018, Montreal, QC,
Canada, 16 July 2018, pp. 33–39 (2018)

25. Singh, M., Kim, S.: Branch based blockchain technology in intelligent vehicle. Com-
put. Netw. 145, 219–231 (2018)

26. Grignard, A., Alonso, L., Taillandier, P., Gaudou, B., Nguyen-Huu, T., Gruel, W.,
Larson, K.: The impact of new mobility modes on a city: a generic approach using
ABM. In: Morales, A.J., Gershenson, C., Braha, D., Minai, A.A., Bar-Yam, Y.
(eds.) ICCS 2018. SPC, pp. 272–280. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96661-8 29

27. Alfeo, A.L., et al.: Urban swarms: a new approach for autonomous waste manage-
ment. CoRR, abs/1810.07910 (2018)

http://www.bbc.com/news/technology-34475031
https://eng.uber.com/uber-big-data-platform/
https://eng.uber.com/uber-big-data-platform/
https://techcrunch.com/2018/01/25/lyft-god-view/
https://techcrunch.com/2018/01/25/lyft-god-view/
https://doi.org/10.1007/978-3-319-96661-8_29
https://doi.org/10.1007/978-3-319-96661-8_29

162 L. Marrocco et al.

28. Grignard, A., Taillandier, P., Gaudou, B., Vo, D.A., Huynh, N.Q., Drogoul, A.:
GAMA 1.6: advancing the art of complex agent-based modeling and simulation.
In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.)
PRIMA 2013. LNCS (LNAI), vol. 8291, pp. 117–131. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-44927-7 9

29. Castelló Ferrer, E.: The blockchain: a new framework for robotic swarm systems.
CoRR, abs/1608.00695 (2016)

30. Bucchiarone, A., De Sanctis, M., Marconi, A., Martinelli, A.: DeMOCAS: domain
objects for service-based collective adaptive systems. In: Drira, K., et al. (eds.)
ICSOC 2016. LNCS, vol. 10380, pp. 174–178. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68136-8 19

https://doi.org/10.1007/978-3-642-44927-7_9
https://doi.org/10.1007/978-3-319-68136-8_19
https://doi.org/10.1007/978-3-319-68136-8_19

Author Index

Alonso, Luis 144
Alvarez, Nahum 81

Blythe, Jim 96
Bucchiarone, Antonio 111, 144

Calegari, Roberta 21

Feldman, Philip 111
Ferrer, Eduardo Castelló 144

Grignard, Arnaud 144

Ishida, Toru 36, 53

Kamada, Tomio 130

Larson, Kent 144
Lin, Donghui 36, 53
Lippi, Marco 3

Mamei, Marco 3
Mariani, Stefano 3
Marrocco, Luana 144
Matsushima, Hiroyasu 130
Murakami, Yohei 36, 53
Murase, Yohsuke 130

Nakaguchi, Takao 53
Noda, Itsuki 66, 81, 130

Omicini, Andrea 21

Pentland, Alex ‘Sandy’ 144

Tregubov, Alexey 96

Zambonelli, Franco 3

	Preface
	Organization
	Contents
	Multi-agent Systems and Internet of Things
	Distributed Speaking Objects: A Case for Massive Multiagent Systems
	1 Introduction
	2 Speaking Objects as Cognitive Goal-Oriented Agents
	2.1 Data Collection vs. Cognitive Sensing
	2.2 Actuating Commands vs. Achieving Goals

	3 Distributed Coordination as a Conversation
	3.1 From Coordination to Conversations
	3.2 Types of Conversations

	4 Enabling Technologies
	4.1 Cognitive Reasoning
	4.2 Machine Learning
	4.3 Goal-Oriented Computing
	4.4 Argumentation-Based Coordination

	5 Integration Recipe: Open Challenges for Realizing the Vision
	5.1 Massive Scale and Heterogeneity
	5.2 Middleware
	5.3 Humans-in-the-Loop
	5.4 Harnessing Algocracy
	5.5 Security

	6 Conclusions
	References

	Injecting (Micro)Intelligence in the IoT: Logic-Based Approaches for (M)MAS
	1 Introduction
	2 Background and Related Work
	2.1 (M)MAS, IoT and Intelligence
	2.2 Engineering Intelligence in the IoT: Key Challenges

	3 Logic-Based Approaches for (M)MAS and IoT
	4 LPaaS & LVLP for Environment Intelligence
	4.1 Vision
	4.2 LPaaS in a Nutshell
	4.3 LVLP in a Nutshell
	4.4 LPaaS & LVLP in (M)MAS

	5 ReSpecT and Logical Tuples for Social Intelligence
	5.1 Vision
	5.2 TuCSoN and ReSpecT in a Nutshell

	6 Conclusion
	References

	Integrating Internet of Services and Internet of Things from a Multiagent Perspective
	1 Introduction
	2 Background of IoS and IoT
	2.1 Internet of Services (IoS)
	2.2 Internet of Things (IoT)

	3 Issues for Integrating IoS and IoT
	4 A Multiagent Perspective on Integrated IoS/IoT
	4.1 Integration of IoS and IoT
	4.2 The Multiagent-Based Architecture
	4.3 Multiagent Methodologies for Service Design

	5 An Example Application of Multilingual Environment Design
	6 Conclusion
	References

	Architectures for Massively Multi-agent Systems
	Two-Layer Architecture for Distributed Massively Multi-agent Systems
	1 Introduction
	2 Two-Layer Architecture
	2.1 Overlay Networks
	2.2 Overall Architecture
	2.3 Macro Agents
	2.4 Micro Agents

	3 Meta Scenario
	3.1 Scenario Description Language Q
	3.2 Extension of Q for Meta-scenario
	3.3 Example of Meta-scenario

	4 Application
	4.1 Driving Control Using Environment-Embedded Sensors

	5 Conclusion
	References

	Multi-agent Social Simulation for Social Service Design
	1 Introduction
	2 Pedestrian Simulations
	2.1 Efficiency/Complexity Trade-Off Analysis for Evacuation Guidance
	2.2 Evacuation Scalability Analysis

	3 Transportation Simulations for On-Demand Traffic Systems
	4 OACIS: Exhaustive Simulation Framework
	5 Concluding Remarks
	References

	Inverse Reinforcement Learning for Agents Behavior in a Crowd Simulator
	1 Introduction
	2 Related Work
	3 Pedestrian Simulator
	4 Agent Model
	5 Preliminary Validation
	6 Conclusions
	References

	FARM: Architecture for Distributed Agent-Based Social Simulations
	1 Introduction
	2 Related Work
	3 FARM Distributed Simulation Architecture
	4 Github Simulation and Experiment Setup
	5 Results
	6 Discussion
	References

	Applications of Massively Multi-agent Systems
	Diversity in Massively Multi-agent Systems: Concepts, Implementations, and Normal Accidents
	1 Introduction
	2 The TaaS Spectrum of Coordination
	2.1 Market Systems
	2.2 Hierarchical Control Systems

	3 Ensembles of Hierarchies
	3.1 Research Challenges
	3.2 General Framework
	3.3 Hierarchical Adaptation
	3.4 Collective Adaptation Engine

	4 Resilience Engineering for Normal Accidents
	References

	CARAVAN: A Framework for Comprehensive Simulations on Massive Parallel Machines
	1 Motivation and Significance
	2 Software Description
	2.1 Overall Architecture
	2.2 Requirements for a Simulator
	2.3 Preparation of a Search Engine

	3 Implementation
	4 Application to Multi-agent Simulation
	4.1 Searching Trade-Off Relationships in Evacuation Planning
	4.2 Multi-objective Optimization Algorithm
	4.3 Evacuation Simulator
	4.4 Results and Discussion

	5 Conclusions and Future Work
	References

	BASIC: Towards a Blockchained Agent-Based SImulator for Cities
	1 Introduction
	2 Background
	2.1 Car-Sharing Scenario
	2.2 Agent-Based Simulation
	2.3 Blockchain and Smart Contracts

	3 The BASIC Architecture
	3.1 Data and Simulation Layers
	3.2 Blockchain Layer
	3.3 Planner Layer

	4 Experiment, Results and Analysis
	5 Discussion and Future Work
	References

	Author Index

