

H2020-EU.3.1: Personalised Connected Care for Complex Chronic

Patients

Project No. 689802

Start date of project: 01-04-2016

Duration: 45 months

Project funded by the European Commission, call H2020 – PHC - 2015

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Revision: 01

Date: 23-12-2019

WP5 – EVOLUTIONARY INTEGRATION

D5.3: FINAL RELEASE OF THE GENERIC CONNECARE SYSTEM

Deliverable D5.3

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 2 of 94

Document Information

Project Number 689802 Acronym CONNECARE

Full title Personalised Connected Care for Complex Chronic Patients

Project URL http://www.CONNECARE.eu

Project officer Birgit Morlion

Deliverable Number 3 Title Final Release of the generic CONNECARE system

Work Package Number 5 Title Evolutionary Integration

Date of delivery Contractual MONTH 45 Actual MONTH 45

Nature Prototype  Report  Dissemination  Other 

Dissemination Level Public  Consortium 

Responsible Author Eloisa Vargiu Email eloisa.vargiu@eurecat.org

Partner EURECAT Phone +34 932 381 400

Participants Matti Karagach (eWAVE)

Abstract

In this document, the final release of the generic CONNECARE system is
presented. Its customization to each site of the project is documented in
deliverables D5.5, D5.7, and D5.9.

This deliverable reflects only the author’s view and the European Commission is not responsible for

any use that may be made of the information it contains. (Art. 29.5)

CONNECARE project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement Nº 689802 (Art. 29.4)

http://www.widest.eu/
mailto:eloisa.vargiu@eurecat.org

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 3 of 94

Table of contents

EXECUTIVE SUMMARY………………………………………………………………………………………….4

1. THE GENERIC CONNECARE SYSTEM…………………………………………………………………….7

1.1 ARCHITECTURAL OVERVIEW………………………………………………………………………………………7

1.2 UPDATED REQUIREMENTS…………………………………………………………………………………………8

1.3 MAIN COMPONENTS………………………………………………………………………………………………….9

1.3.1 SACM……….10

1.3.2 SMS……10

1.3.3 Authentication manager………………………………………………………………………………………..11

1.3.4 Queue Manager…………………………………………………………………………………………………11

1.3.5 Digital Health Framework / Patient Information Adapter……………………………………………………11

1.3.6 Access Control and Data Security……………………………………………………………………………12

2. DEPLOYMENT OF THE FINAL RELEASE………………………………………………………………..13

3. TECHNICAL MANAGEMENT……………………………………………………………………………….14

4. PENETRATION TEST………………………………………………………………………………………..18

4.1 INITIAL PENETRATION TEST………………………………………………………………………………………18

4.2 FINAL PENETRATION TEST………………………………………………………………………………………..19

5. CUSTOMIZATION TO THE 4 SITES AT A GLANCE……………………………………………………..21

6. CONCLUSIONS AND A VISION TO THE FUTURE……………………………………………………….23

7. REFERENCES………………………………………………………………………………………………...26

8. ANNEXES……………………………………………………………………………………………………...27

8.1 ANNEX 1…….27

8.2 ANNEX 2…….46

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 4 of 94

Executive Summary

WP5 was aimed at defining and implementing the overall CONNECARE system according to an

evolutionary approach. According to the co-design approach defined and implemented in WP2 that relies

on several cycles and iterations, also the integration phase was evolutionary and done in accordance

with requirements changes and feedback from the implementation studies.

This deliverable documents the final release of the CONNECARE system that take into account needs

and requirements of the project and that is the main ICT outcome of CONNECARE.

According to the CONNECARE philosophy and for the sake of scalability and transferability, the overall

CONNECARE system has been defined and developed as a generic system, totally independent of the

specificity of the 4 sites. Following this approach, the CONNECARE system has been, then, customized

according to the specific requirements of each of the sites. In fact, the real integration is strictly dependent

on the actual situation of each of the involved sites. Moreover, being the integration site-dependent,

different solutions have been taken in each site. Thus, the integration is separately processed for each

site and only the partner from that site has been involved; deliverable D5.5 “Final Release of the Catalan

CONNECARE system”, D5.7 “Final Release of the Israeli CONNECARE system”, and D5.9 “Final

Release of the Groningen CONNECARE system” present those customizations.

The rest of the deliverable is organized as follow. In Section 1, the generic architecture of the

CONNECARE system is presented together with the updated requirements and its main components.

Let us note that each component is described in a specific deliverable: the DHF in the D5.1 “Collaborative

digital health framework” (submitted at M6, September 2016); the final SACM in deliverable D3.6 “Final

Smart Adaptive Case Management” (submitted at M43); and the final SMS in the deliverable D4.7 “Final

Self-Management System” (to be submitted at M45). For the sake of completeness, this deliverable briefly

recalls each subsystem; for a detailed description of each, please refer to the corresponding document.

Section 2 lists the deployment characteristics of the production environment, whereas Section 3 focuses

on technical details on the deployment of the final release. In Section 4, the results and taken actions

done at security level with the penetration test performed first by EURECAT and subsequently by an

external company in Israel are reported. Section 5 sketches the customization done in the 4 sites. Finally,

Section 6 ends the document with conclusions and a vision to the future.

Overall, the work summarized in this document is based on the work made by EURECAT and eWAVE in

WP5, together with the support of all technical partners and the supervision of the clinical partners

(especially from WP2). The work presented in this deliverable is strictly related with the overall work made

in WP5 but also to work made in WP3 and WP4. It updates, advances, and improves the deliverable D5.2

“Study Release of the generic CONNECARE system”, submitted at M18. Moreover, these previous

deliverables are highly recommended to be read:

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 5 of 94

Number Title Description

D2.1
Cook-book for project

development

The document provides an overall view of the CONNECARE project, and

describes the procedures for its development. The deliverable indicates the

different phases of the project, with an emphasis on how PDSA cycles will

be structured. Overall, the CONNECARE project does not aim at a rigid

integrated care solution that needs to be adopted by all potential deployment

sites but to a flexible solution that has high potential for generalization at the

EU level. In this sense, innovative methodologies involving both global and

local stakeholders have been adopted.

D2.5

PDSA process and final

design of the CONNEARE

system

This deliverable provides a complete view of the Plan Do Study Act (PDSA)

methodology used through-out the project, including the main objectives,

methods and outcomes for each cycle and how this iterative strategy allowed

to shape the CONNECARE system. Moreover, it provides a summary of the

final design of the system, with a focus on the functional and non-functional

requirements that fostered the development and improvement of the system

and how these requirements were tackled.

D3.6
Final Smart Adaptive Case

Management System

This deliverable goes with the final release of the Smart Adaptive Case

Management system (SACM) by TUM and ADI, integrated to the SMS by

EURECAT and the contribution of UNIMORE for the clinical decision support

systems.

D4.7
Final Self-Management

System

This deliverable goes with the final release of the Self-Management System

(SMS) by EURECAT and the contribution of UNIMORE for the recommender

system.

D5.1
Collaborative Digital Health

Framework

This deliverable describes the collaborative DHF that includes the

interoperability model and the communication protocols.

D8.13 Exploitation plan
This deliverable describes how the CONNECARE consortium proposes to

exploit the connected care service after completion of the project

Finally, the deliverables on customization and integration in each site, which will be submitted at M45

(December 2019) as the current one, are recommended to be read:

Number Title Description

D5.5

Final Release of the

Catalan CONNECARE

system

The deliverable described the customization and integration of the generic

CONNECARE system at Catalan level and to the Hospital Clínic in

Barcelona. This deliverable extends the preliminary work documented on

D5.4 “Study Release of the Catalan CONNECARE system”. The release of

the final generic CONNECARE system described in D5.3.

D5.7
Final Release of the Israeli

CONNECARE system

The deliverable described the customization and integration of the generic

CONNECARE system to Israel.

The release of the final generic CONNECARE system described in D5.3.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 6 of 94

D5.9

Final Release of the

Groningen CONNECARE

system

The deliverable described the customization and integration of the generic

CONNECARE system to Groningen.

The release of the final generic CONNECARE system described in D5.3.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 7 of 94

1. The Generic CONNECARE System

The aim of the CONNECARE project is to co-design, develop, deploy, and evaluate a novel, smart,

adaptive integrated care system for chronic care management. The purpose of this is to reduce costs and

improve patient outcomes by improving the integration of long term care for those chronically sick with

more than one long term condition. This section describes the final release (Final Release) of the overall

CONNECARE system.

1.1 Architectural Overview

The CONNECARE system is a federation of subsystems each devoted to provide a set of goal-oriented

functionalities, whose main components are the Self-Management System (SMS) and the Smart Adaptive

Case Management system (SACM). Based on the concept of microservices, the SMS provides intelligent

tools to monitor patients (i.e., physical activity, sleeping, health status, drug adherence, simple

rehabilitation tasks, and self-checked questionnaires) and to autonomously interact with them through

engagement, rewards, and warnings through a recommender system. The SACM has extended

functionalities for case modelling and execution, specifically tailored to the healthcare domain.

Additionally, the SACM includes a Decision Support System to show patients in a map and to create

routes for better organizing visits. The SMS and SACM interact each other through the CONNECARE

Queue Manager which connects both subsystems and orchestrates their communication and provides

an integration framework to link CONNECARE services to specific Electronic Health Records (EHR) and

regional Personal Health Folders (PHF) in each site [1]. Figure 1 sketches the architecture of the final

CONNECARE system.

Figure 1 - The architecture of the final release of the CONNECARE system.

Summarizing, the final release of the CONNECARE system contains the following subsystems:

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 8 of 94

 SACM – Smart Adaptive Case Management system, that includes the mapping DSS

 SMS – Self-Management System, that includes the recommender system

 Authentication Manager – user management

 Queue Manager – message broker

 DHF – Digital Health Framework / PIA – Patient Information adapter

Figure 2 sketched the architecture zooming in the SACM and SMS to give the full picture.

Figure 2 - Final architecture with details on the main subsystems: SACM and SMS.

1.2 Updated Requirements

The CONNECARE system requirements are a set of requirements from all the systems implied in it.

During the project, requirements have been continuously updated according to the iterative approach and

the evolution of the PDSA cycles.

The initial functional and non-functional requirements are listed in the deliverable D5.2. Here, we report

those related to the last 2 periods of the project. In D3.6 “Final Smart Adaptive Case Management

System” and D4.7 “Final Self-Management System” the full list of requirements and updates made after

the Study Release as feedback from the implementation studies have been deeply reported. For the sake

of completeness, they are listed below:

 SACM

o case team management;

o show the generated linked-data structure of a case with a hierarchical representation;

o simplify third party integration;

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 9 of 94

o support correcting tasks at any time even after task completion;

o allow to add work-plan tasks multiple times and even execute them in parallel;

o support auto-check questionnaires;

o support exporting case instances for scientific data analytics and evaluation.

 SMS

o integrated activity trackers;

o simple rehabilitation tasks;

o profile picture in the setting screen;

o advices with external links and videos;

o media auto-download.

1.3 Main Components

As already said, the CONNECARE system consists of a federation of subsystems. Thus, one of the

critical points is the synchronization of the data and the responsibility to keep the coherence of the

information into the system. For this reason, the core systems are responsible to share this information

and coordinate the subsystem. Table 1 shows the responsible of the information related to the users:

authentication, authorization, and management.

Table 1 - User's responsibilities.

 Auth Management SACM SMS MAPPING DSS

Authentication
Master

token creation

Slave

token validation

Slave

validates token

Slave

validates token

User Management
(CRUD Operations)

Master

user basic fields

Slave

basic user fields
and additional user

fields

Slave Slave

User Role
Management

Master Slave Slave Slave

Authorization Master Master Master Master

Let us note that, even if it is fully integrated in the SACM, in the table we considered separated the

Mapping DSS as a CONNECARE subsystem. This is due to the evolution it had at integration time. Initially

it was expected to be a presentation layer of the SACM. Nevertheless, considering its usefulness,

clinicians changed the requirements. Thus, to provide all the required functionalities, the Mapping DSS

has its own backend and can be considered as a further CONNECARE subsystem.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 10 of 94

1.3.1 SACM

The SACM is responsible to manage the clinical process in an adaptive way. Let us recall here its main

functionalities:

 Manage users (creating/editing);

 Add a new case;

 Access to the list of my cases;

 Check the summary of a case;

 Manage the stages of a process: Case Identification, Case Evaluation, Workplan definition,

Workplan execution, and Discharge;

 Manage the tasks of each stage;

 Access and review the data of a case;

 Manage the team;

 Read and accept notifications;

 Send/receive messages from the team members;

 Send/receive messages from the patients;

 Write/read notes to/from the rest of the team.

The whole SACM functionality and architecture can be found in D3.6 “Final smart adaptive case

management system”.

1.3.2 SMS

The SMS is responsible to give support to patients and carers for empowerment and engagement. Let

us recall here its main functionalities:

 Monitor physical activity (steps and level of activity) and health measurements (i.e., blood

pressure, temperature, weight, heart rate, and oxygen saturation);

 Manually add health measurements;

 Perform tasks and follow-up them: questionnaires; simple rehabilitation tasks, drugs intake and

adherence;

 Consult advices automatically generated or sent by professionals and personalised for the given

patient;

 Send/receive messages from the team of professionals in charge;

 Read and accept notifications;

 Set up the app: language, notifications, configure the devices, manage the profile picture,

manage auto-downloading of received content.

The whole SMS functionality and architecture can be found in the “D4.7 “Final smart adaptive case

management system”.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 11 of 94

1.3.3 Authentication manager

The authentication manager is responsible to manage: the CONNECARE users; their role in the

CONNECARE system; relationships between users; and the rights of each user (i.e., which professionals

can access to which patients and what data can be accessed by the professionals). Its main functionalities

are: single sign on (SSO), creation and management of the authentication tokens; and login / logout to

the system.

The authentication manager did not change with respect to the implementation of the Study Release. The

full description is given in the deliverable D5.2 “Study Release of the generic CONNECARE system”.

1.3.4 Queue Manager

The Queue Manager acts as a message broker and is responsible to interconnect the two main

subsystems of CONNECARE (SACM and SMS) with the DHF (also called, PIA) that is the connector to

the external system (e.g., hospital information systems, electronic health record). Its main functionalities

are: manage a queue of messages for each system being fully transparent and guarantee asynchronous

communication between SACM and SMS.

1.3.5 Digital Health Framework / Patient Information Adapter

The Digital Health Framework (DHF) presented in the D5.1 “Collaborative digital health framework”,

submitted at the very beginning of the project (M6), evolved according to the requirements of each of the

involved sites and it is now also called Patient Information Adapter (PIA).

The PIA is responsible to connect the clinical information systems to the CONNECARE system and

transfer patient’s data to CONNECARE. It transforms messages to/from an external format (e.g., HL7)

from/to the one adopted in CONNECARE and the adopted protocol (e.g., C-CDA) to REST. Working at

data level, the PIA is aimed at adapting the data from each kind of protocol and system to one generic

protocol of the CONNECARE API. In so doing, it is generic and may be adapted to any clinical information

system and site.

Figure 3 sketches the PIA and its interactions with the rest of the CONNECARE system.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 12 of 94

Figure 3 - The PIA and its interaction with the CONNECARE system.

1.3.6 Access Control and Data Security

The access control and data security did not change with respect to the implementation of the Study

Release. Their full description is given in the deliverable D5.2 “Study Release of the generic

CONNECARE system”.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 13 of 94

2. Deployment of the Final Release

As reported in D5.2 “Study Release of the generic CONNECARE system”, two instances in Amazon

Central Europe have been reserved. Table 2 details the Amazon environments contracted at the

beginning of the project.

Table 2 - Initial configuration of the Amazon environments

 Integration Environment Production Environment

Provider Amazon (Europe Central) Amazon (Europe Central)

Type of instance m4.xlarge m4.xlarge

RAM 16 GB 16 GB

HDD Space 100 GB (EBS Volume) 100 GB (EBS Volume)

SO Ubuntu 16.04.1 LTS Ubuntu 16.04.1 LTS

Domain test.connecare.eu system.connecare.eu

Open ports
22, 80, 443, 8084, 8085 (to
Internet)

443 (to internet)

22 (to selected partners)

Due to the incorporation of new components (as for instance the PIA in Groningen and the integration of

mapping DSS with its own backend), serious performance problems have been experienced in the

production environment. Sometimes it caused collapses at specific times of the day and the system

stopped work. All the incidences have been immediately “manually” resolved by the EURECAT team (i.e.,

restarting the servers and the services). To avoid this kind of problems, EURECAT decided to upgrade

the Amazon production environment, the new characteristics are listed in Table 3.

Table 3 - New characteristics of the production environment

 Production Environment

Provider Amazon (Europe Central)

Type of instance m4.2xlarge

RAM 32 GB

HDD Space 120 GB (EBS Volume)

SO Ubuntu 16.04.1 LTS

Domain system.connecare.eu

Open ports
443 (to internet)

22 (to selected partners)

After the server update, the performance issues in the production environment were reduced in a very

important way and the system did not stop again.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 14 of 94

3. Technical Management

One of the main goals of WP5 was the collaboration between the different technical teams (i.e.,

EURECAT, TUM, ADI, UNIMORE, and eWAVE) and specificities of the sites in order to deliver the final

CONNECARE system. After the 1st review meeting, to improve the management of the whole project

(versions, cycles, and list of actions), eWAVE started working as a Product Owner of the overall

CONNECARE system. The tasks, user stories, and bugs are reported on the unique JIRA project log that

eWAVE opened for the project. The first workflow was defined on 16/1/18 and since then, CONNECARE

technical teams have worked accordingly. eWAVE led the maintenance of the technical aspects in the

project implementation log file. Each new bug was reviewed by eWAVE and opened in the JIRA if needed.

Furthermore, eWAVE led the "end-to-End" QA cycles as part of the evolutionary integration task.

To better follow-up the project, a weekly meeting was scheduled every Wednesday at 10:30 (CEST) held

through gotomeeting, participated by eWAVE, EURECAT, TUM, and ADI from the beginning1 and joined

also by UNIMORE when the integration of the intelligent tools (recommender system and mapping DSS)

started. Each meeting was aimed at reviewing the current status of the work, rising the open issues, and

solved technical issues with the collaboration of all the partners. After every meeting, the product owner

distributed a meeting summary including also the tracked issues. Figure 4 shows an example of the

meeting held on December 6th, 2018.

Figure 4 - Example of summary of a technical meeting

1 IPHEALTH also participated until their termination.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 15 of 94

Figure 5 - CONNECARE JIRA dashboard

Figure 6 - CONNECARE JIRA workflow

To make more agile the coordination and management of the overall development we worked with JIRA

as our main tasks, bugs and versions management tool:

 We opened a CONNECARE project in the JIRA;

 We defined roles and permissions to each technical partner;

 We defined our specific workflow in the JIRA;

 We defined epics, tasks, and bugs;

 We defined sprints and versions and assign ticket to each sprint;

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 16 of 94

 We managed and set our priorities to the open issues.

Figure 5 shows the main dashboard of the CONNECARE project in the JIRA, Figure 6 sketches the

workflow, and Figure 7 the final list of issues by component. Let us note that for both SACM and SMS the

backend and the frontend have been considered separately. Moreover, the DSS (that refers to the

mapping DSS) and the recommender system appear separated to the corresponding subsystem that

integrate them (SACM and SMS, respectively) because the JIRA issues refer to the integration tasks.

The number of issues for each component are not necessarily pointing at number of bugs but they are

the result of number of change requests, technical complications, and process of the product

development for each component.

Figure 7 - Final list of issues by component

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 17 of 94

In order to get feedbacks from the clinical partners for each new version or feature that was released to

production, Google Document was opened for bugs reporting2 (Figure 8 shows an extract):

 Bugs were reported by the clinical partners (usually the case manager) into the document;

 Critical bugs and stoppers was also accompanied with email;

 The product owner gathered the feedbacks and opened appropriate tickets in the Jira according to

priority;

 Critical and high bugs were fixed and released in “hot fixes” versions.

Figure 8 - Extract of the Implementation Log

At the beginning of the development phase of the CONNECRAE project, the product owner together with

all the technical team and the consensus by the clinical partners defined a versioning plan. Starting from

that, the JIRA sprints was defined and the plan was fully delivered during the project (see Figure 9).

Figure 9 - Versioning of the CONNECARE system

2 https://docs.google.com/spreadsheets/d/13G7bnZgRYKugzOd7fVjchG9ZSLdUFmhWmcMwI5yK0GI/edit#gid=808141279

https://docs.google.com/spreadsheets/d/13G7bnZgRYKugzOd7fVjchG9ZSLdUFmhWmcMwI5yK0GI/edit#gid=808141279

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 18 of 94

4. Penetration Test

4.1 Initial Penetration Test

On April 2018, the Cybersecurity Unit in EURECAT performed the penetration test of the current version

of the generic CONNECARE system running in the production environment.

Table 4 - Main results of the penetration test performed by EURECAT

OWASP Top 10

 Title Times Criticism

1 Injection 40 Medium

2 Broken Authentication and Session Management 0 Not applicable

3 Cross-Site Scripting (XSS) 2 Medium

4 Insecure Direct Object References 0 Not applicable

5 Security Misconfiguration 0 Not applicable

6 Sensitive Data Exposure 0 Not applicable

7 Missing Function Level Access Control 0 Not applicable

8 Cross-Site Request Forgery (CSRF) 0 Not applicable

9 Using Components with Known Vulnerabilities 0 Not applicable

10 Invalidated Redirects and Forwards 0 Not applicable

Table 5 - Found vulnerabilities by the penetration test performed by EURECAT

Vulnerabilities

 Title Times Criticism

1 HTML code injection 40 Medium

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 19 of 94

2 XSS 2 Medium

The audit found several vulnerabilities in the way the parameters supplied by the users of the application

are treated. These vulnerabilities may allow to alter the behaviour of the application in a malicious way

and to be a potential vector for attacks with greater impact. The summary of the results is given in Table

4. The found vulnerabilities are listed in Table 5. The full document of the penetration test performed by

EURECAT is presented in the Annex 1.

All the issues with “medium” criticism have been solved by EURECAT with the support of TUM.

4.2 Final Penetration Test

On March 2019, the ASSUTA Medical Center asked for performing a penetration test to certify the security

of the CONNECARE system and its adoption at the hospital. The penetration test started on May 2019

and was performed by the company BUGSEC Cybersecurity (https://bugsec.com/).

They found that the system security risk level was high. In particular, during the test, they found many

issues with the protection of sensitive information and things that could harm application users.

Figure 10 - Summary of the findings by BUGSEC Cybersecurity

Figure 10 summarizes the main findings, Table 6 reports the issues marked of high impact. The full

document delivered by BUGSEC Cybersecurity is given in the Annex 2.

EURECAT solved the issues classified as High (no Critical ones were identified), reported in Table 6, and

in October 2019 the penetration test passed without any open issues, The second tests were performed

by “Bugsec” a third party security company in Israel. Thus, the ASSUTA Medical Center certificated the

system.

https://bugsec.com/

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 20 of 94

Table 6 - List of issues with high risk level

Item Test Type Risk Level Component Topic General Explanation Status

4.1 Applicative High Application
Unrestricted File

Upload

The Unrestricted File Upload
vulnerability describes a situation

where the server does not adequately
restrict the type and content of files
uploaded to the server by users. An

attacker could exploit this weakness in
order to cause a Denial of Service or
even to gain control of the server.

Vulnerable

4.2 Applicative High Application
Insecurely
Designed

Component

The Insecurely Designed Component
vulnerability describes a situation

where a certain component is designed
or implemented in an improper way

which constitutes a security risk.

Vulnerable

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 21 of 94

5. Customization to the 4 Sites at a Glance

From the very beginning, when the technical partners started gathering the requirements, many

differences among the sites arose. Thus, the overall CONNECARE system has been defined and

implemented in a very generic way and, at the same time, the “local” technical partners worked together

with the clinical partners to customize the solution according to the specific needs:

 EURECAT worked with IRBLL and IDIBAPS;

 eWAVE worked with ASSUTA and, also, with UMCG (after the termination of IPHEALTH).

Details on the customizations are given in D5.5 (Catalonia), D5.7 (Israel), and D5.9 (Groningen), Table 7

summarizes the main differences categorized as “clinical information system integration”, “process”,

“functionalities”, “third party”, and “further adopted ICT tools”.

Table 7 - Main customizations in the 4 sites

 ASSUTA UMCG IRBLL IDIBAPS

C
li
n

ic
a
l

in
fo

rm
a
ti

o
n

 s
y
s
te

m
 i
n

te
g

ra
ti

o
n

In Israel the main clinical
system in Assuta
Hospital is the
“Kameleon system”
which can work with web
services API to get
patient data.

The PIA can connect to
the API and get patient
information by ID.

The clinical system
in UMCG is the
“EPIC” system

The only access to
the patient’s
information in the
EPIC system was
through CCD-A files
that actually can be
downloaded from
the patient portal.

The PIA can import
CCD-A file, convert
the patient
information into the
CONNECARE
format, and send
the patient’s
information to the
CONNECARE
system.

The
CONNECARE
DHF will be
connected to the
Shared Electronic
Health Record
(HC3) defined at
Catalan level.

The DHF is composed
of the Fast Healthcare
Interoperability
Resources (FHIR)
connected to the
Hospital Information
System (HIS) and a
proxy server.

Each time a new
patient is introduced
into the HIS her/his
information passes to
the proxy server. The
proxy server selects
the information to be
sent to CONNECARE,
it authenticates as a
trusted user, receives
a valid token, and,
then, the patient is
created into the
CONNECARE system.

P
ro

c
e
s
s

Once the Case Evaluation stage has been
done, a new Case Evaluation can be added.
The process may be repeated infinitely.

CS2 relies on two
workplan
definitions: before
and after the
surgery

Case Evaluation tasks
are optional.

 Once a questionnaire has been filled, the corresponding score is
highlighted according to a traffic light criteria (green if in the given
range of values, yellow if it overpasses the given range but still in
a “normal” range, and red if it overpasses the range and generates
an alarm).

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 22 of 94

F
u

n
c
ti

o
n

a
li
ti

e
s

Sedentary activity is monitored and a maximum
of suggested minutes prescribed.

In the CS2, high
level activity is not
monitored.

Physical activity is
monitored only in
terms of number of
steps.

The Recommender
System has been tested
with selected patients.

The Recommender
System has not
been used.

The mapping is
available and
running.

The Recommender
System has not been
used.

Simple rehabilitation
tasks can be prescribed
to the patient.

A graphical view of
a human body is
used in CS2 to
show the place of
the surgery.

A graphical view
of a human body
is used to show
data from the
Charlson.
Moreover, in CS2
also the place of
the surgery is
show.

The notes screen
in the SACM has
been
implemented as a
“wall” to leave
messages.

Oxygen saturation
is also prescribed
in the SACM and
measures
manually added in
the SMS by the
patients.

Suitable videos for
educational
material
purposes,
specifically made
for CONNECARE
have been used
as advice

T
h

ir
d

 p
a
rt

y

Due to CE mark
problems,
Withings/Nokia devices
have not been used.
Patients put manually
the monitored measures.

 The LifeVit wristband
has been used instead
of Fitbit.

Medical devices have
not been used.

F
u

rt
h

e
r

IC
T

 t
o

o
ls

 Besides the overall
CONNECARE system,
further ICT tools have
been experimented.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 23 of 94

6. Conclusions and a Vision to the Future

The CONNECARE system was defined at the very beginning of the project according to the initial

requirements of all the sites and the expectation of the project, as reported in the Document of Actions.

First the overall architecture was defined, subsequently a generic solution for the integration with the

clinical sites was searched for and the DHF defined (described in the D5.2 “Study Release of the generic

CONNECARE system”). eWAVE implemented the integration layer called Patient Information Adapter

(PIA) and in order to get and adapt information from the hospitals and integrate them to CONNECARE,

the layer can get patients data from different formats and convert them into the CONNECARE format.

The integration is different in Catalonia, Groningen, and Israel due to the different site requirements and

limitations (described in the D5.5 “Final release of the Catalan CONNECARE system”, D5.7 “Final release

of the Israeli CONNECARE system” and D5.9 “Final release of the Groningen CONNECARE system””).

As reported in the D3.3 “First Smart Adaptive Case Management system” and D3.6 “Final Smart Adaptive

Case Management system”, the SACM is based on the SocioCortex, a social information modelling

platform previously developed by the TUM. The SocioCortex has been adapted to healthcare scenario

(see D3.1 “SocioCortexfor healthcare”) by TUM. On top of the SocioCortex, ADI implements the frontend

according to the co-design approach of CONNECARE, the requirements, and the feedback by the

clinicians all along the project. Regarding the SMS, the initial idea was to use the VitalinQ solution by

IPHEALTH as a baseline. Thus, from the very beginning of the project the EURECAT and the IPHEALTH

worked together to define the best solution for the backend (as reported in D4.1 “First Self-Management

System”). After the IPHEALTH termination, the overall backend, called xCARE, has been developed by

EURECAT (see D4.7 “Final Self-Management System”). Moreover, EURECAT has been in charge of

developing the frontend of the SMS (i.e., the app) for both Android and iOS smartphones. All the work

concerning the integration and communication between the SACM and the SMS (including the Queue

Manager) was performed by EURECAT with the support of TUM and started once a preliminary version

of both backends was available. The authentication manager and the access control and data security

were implemented from the very beginning of the project by EURECAT. Both the mapping DSS and the

recommender system were investigated and implemented by UNIMORE once the requirements were

gathered and the clinicians started using the overall system. Their integration into the SACM and the

SMS has been performed by UNIMORE with the support of EURECAT. During all the phases, eWAVE

was in charge of performing the quality tests and managing the overall work.

Summarizing, we identified the starting and ending TRL of each of the components, including the overall

system (a detailed table is given in D8.12-813), as depicted in Figure 11. Let us note that the DSS

mapping ends with a TRL=5 instead of 6 as the other subsystem, because it was required and adopted

only in Lleida and tested outside the clinical studies by the team of professional from the IRBLL (details

are given in D3.4 “Stratification and mapping DSS”).

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 24 of 94

Figure 11 - TRLs of the CONNECARE system and each components

Considering the CONNECARE system as a whole, we may summarize the evolution of the system as in

Figure 12.

Figure 12 - Evolution of the CONNECARE system

As for the future directions, we envisage that, taking into account all the requests of improvement coming

from the clinical sites (as reported in the implementation log and in D3.6 “Final Smart Adaptive Case

Management system”, for the SACM, and D4.7 “Final Self-Management System”, for the SMS), the

system is ready to be deployed at large-scale covering the following dimensions:

1. Territorial: implementation of the integrated-care programmes in further sites;

2. Population: extension of the integrated care programme at regional level in all the sites: the whole

Region of Catalonia, The Netherlands, and in the Assuta Medical Centers’ network, providing the

service to complex chronic patients from all over the countries.

3. Diseases management: implementation in different chronic diseases and different case types

(e.g., heart disease, pulmonary disease, anaemia, cognitive impairment, metabolic syndrome).

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 25 of 94

In so doing, we will prove: continuity; increasing number of final users (both professionals, patients, and

carers); replicability and flexibility of the solution; and sustainability in terms of costs of the involved health

and social care systems.

Strategies for business model and exploitation plan of the CONNECARE system are out of the scope of

the current deliverable. The corresponding information is part of D8.13 “Exploitation plan” submitted at

M44.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 26 of 94

7. References
[1] E. Vargiu, J.M. Fernández, F. Miralles, S. Nakar, V. Weijers, H. Meetsma, S. Mariani, M. Mamei, F.

Zambonelli, F. Michel, F. Matthes, J. Kelly, J. Eaglesham, R. Kaye. Patient Empowerment and Case

Management in CONNECARE. Global Conference on Integrated Care (GCIC 2018). Singapore,

February 1-3, 2018.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 27 of 94

8. Annexes

8.1 Annex 1

H2020-EU.3.1: Personalised Connected Care for Complex Chronic

Patients

Project No. 689802

Start date of project: 01-04-2016

Duration: 42 months

Project funded by the European Commission, call H2020 – PHC - 2015

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Revision: 01

Date: 04-04-2018 (circulated 15-01-2019)

WP5 – Evolutionary Integration

 Security Audit

Deliverable D5.3

Ref. 689802 – CONNECARE-D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 28 of 46

Table of contents

1. INTRODUCTION ... 29

2. ANALYZED VULNERABILITIES .. 30

3. SUMMARY OF THE RESULTS .. 36

4. RECON .. 38

4.1 OPEN PORTS .. 38

4.2 DETECTED HOSTS ... 38

5. ENCOUNTERED VULNERABILITIES ... 39

5.1 HTML CODE INJECTION ... 39

5.1.1 Affected URLs .. 43

5.1.2 Recommendations ... 43

5.2 XSS .. 44

5.2.1 Affected URLs .. 46

5.2.1 Recommendations ... 46

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 29 of 94

1. Introduction

This document is the result of the audit process in “white box and black box” mode made to the host

https://system.connecare.eu.

To carry out the audit, several widely used methodologies have been taken into account, such as:

 OSSTMM http://www.isecom.org/research/osstmm.html

 OWASP https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents

Expanded and adapted by our team to make them more effective.

In all the identified vulnerabilities, the tests carried out, their objective and the impact of the findings

classified with two metrics will be detailed:

 Criticality; it defines the degree of damage that can be inflicted on a system in case an attacker

obtains profit of it.

Low: The impact of the vulnerability does not imply compromise of the system, but it does mean

that an attacker forces the system to behave in a non-predefined way.

Medium: The impact of the vulnerability does not directly imply the commitment of the system,

but it can put at risk the manner of operate of some system components, affect third parties in

the use of the infrastructure, or be the starting point to a total commitment of the system or

application.

High: The vulnerability's impact supposes the commitment of the system or data that the

application handles. confidentiality, as well as the possibility of causing an error that generates

an interruption in the provision of the service.

 Priority; it establishes the priority that must be assigned to the correction of the vulnerability found.

Try to define the cost in resources of applying a corrective measure and its impact on the

infrastructure.

Low: The application of the corrective measure involves a major change in the infrastructure

(update an operating system, change the software version or add new functionality to an

application) to correct a problem that does not pose a high risk.

Medium: The application of the corrective measure involves altering the configuration of a service

that must be previously tested in pre-production or correcting an application by modifying its

source code.

High: The corrective measure involves a change in the configuration of some service without

impact on the operation of the services.

http://www.isecom.org/research/osstmm.html
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 30 of 94

2. Analyzed Vulnerabilities

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 31 of 94

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 32 of 94

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 33 of 94

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 34 of 94

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 35 of 94

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 36 of 94

3. Summary of the Results

The audit found several vulnerabilities in the way the parameters supplied by the users of the application

are treated. These vulnerabilities allow to alter the behavior of the application in a malicious way and to

be a potential vector for attacks with greater impact.

OWASP Top 10

 Title Times Criticism

1 Injection 40 Medium

2 Broken Authentication and Session Management 0 Not applicable

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 37 of 94

3 Cross-Site Scripting (XSS) 2 Medium

4 Insecure Direct Object References 0 Not applicable

5 Security Misconfiguration 0 Not applicable

6 Sensitive Data Exposure 0 Not applicable

7 Missing Function Level Access Control 0 Not applicable

8 Cross-Site Request Forgery (CSRF) 0 Not applicable

9 Using Components with Known Vulnerabilities 0 Not applicable

10 Invalidated Redirects and Forwards 0 Not applicable

The following vulnerabilities have been founded:

Vulnerabilities

 Title Times Criticism

1 HTML code injection 40 Medium

2 XSS 2 Medium

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 38 of 94

4. Recon

4.1 Open Ports

4.2 Detected Hosts

Using DNS configuration analysis, the following host related to the audited page have been detected:

redcap.connecare.eu

This host hosts an app for database management.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 39 of 94

What is relevant about this host is that this database management app reveals the email address of a

person related to the project.

This email account should be a generic account not linked to a specific person since, from that e-mail, a

malicious attacker could attempt a social engineering attack on the person to obtain information or access

to the infrastructure.

5. Encountered Vulnerabilities

5.1 HTML Code Injection

Criticism Medium Number of occurrences 42

Probability Not applicable Priorities Medium

Require authentication Yes Exposition Medium/Intranet

During the audit it was found that in multiple parts of the application it is possible to inject HTML code that

is then returned as part of the original application. This vulnerability allows altering the composition of the

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 40 of 94

website both aesthetically (include external content) and maliciously (malware download, spam, phishing

...). As an example, let us consider the following screen:

This messaging interface allows leaving messages to the rest of the team that supports a patient. This

interface freely admits that the messages contain HTML which distorts the functionality and allows, for

example, to load external content indiscriminately. Using the following HTML sentence as a message

<img src = "https://securitygladiators.com/wp-content/uploads/2017/02/12035-hacked_article.jpg" alt =

"Image A" />. It causes the image to load as part of the message.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 41 of 94

Another vector of this attack may be the inclusion in seemingly legitimate links that lead to the

downloading of malware. Using the following HTML sentence

Updated Radiographs can add a link to any site where malware has been deposited and try to

persuade the user to run it.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 42 of 94

It can also be linked using HREF to an external site that simulates belonging to the original infrastructure

in which the access credentials are requested, giving rise to a Phishing attack.

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 43 of 94

5.1.1 Affected URLs

5.1.2 Recommendations

From the point of view of security, any interaction with the user that involves taking parameters to then

build with them something that is reflected in the application, should be analyzed with the utmost caution

and thoroughness in search of HTML / Javascript code. For this, there are many 'regular expressions' or

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 44 of 94

even libraries that allow an input from the user to be analyzed and converted to a format that prevents

the obvious limits of the application from being exceeded.

5.2 XSS

Criticism Medium Number of occurrences 2

Probability Not applicable Priorities Medium

Require authentication Yes Exposition High/Internet

During the audit it was possible to verify the existence of at least two vulnerabilities of type XSS (Cross-

site scripting). These vulnerabilities occur at the moment that an input provided by the user in the form of

JavaScript code, is returned without 'trying' (escape) by the application. This causes a malicious user to

insert JavaScript code arbitrarily and therefore cause unwanted effects to third users (theft of cookies,

alteration of the appearance of the app, etc).

In the case of the audited application, the fact that this vulnerability occurs through JSON requests and

not directly through GET / POST calls over a URL, makes the vulnerability less critical due to the added

difficulty to be exploited.

Example of a vulnerable JSON call:

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 45 of 94

Ref. 689802 – CONNECARE D5.3 Final Release of the generic CONNECARE system_FINAL__.docx page 46 of 94

5.2.1 Affected URLs

5.2.1 Recommendations

As in the previous vulnerability, from the point of view of security, any interaction with the user that

involves taking parameters to then build with them something that is reflected in the application, should

be analyzed with the utmost caution and thoroughness in search of HTML / Javascript code. For this,

there are many 'regular expressions' or even libraries that allow an input from the user to be analyzed

and converted to a format that prevents the obvious limits of the application from being exceeded.

8.2 Annex 2

Penetration Test Report
Assuta

CONNECARE

Votiro -Confidential- 2

Table of Contents

1. Characteristics ... 4

1.1 General ... 4

1.2 System Details ... 5

2. Executive Summary ... 6

2.1 General ... 6

2.2 Findings Distribution ... 7

3. Findings Summary ... 8

4. Findings Details ... 13

Item 4.1 .. 13

Item 4.2 .. 16

Item 4.3 .. 19

Item 4.4 .. 22

Item 4.5 .. 24

Item 4.6 .. 26

Item 4.7 .. 27

Item 4.8 .. 31

Item 4.9 .. 32

Item 4.10 ... 34

Item 4.11 ... 37

Item 4.12 ... 39

Item 4.13 ... 41

Item 4.14 ... 43

Item 4.15 ... 45

Item 4.16 ... 47

Vulnerability Description ... 47

Votiro -Confidential- 3

5. Appendices .. ¡Error! Marcador no definido.

5.1 Methodology ¡Error! Marcador no definido.

5.2 Findings Classification ¡Error! Marcador no definido.

Votiro -Confidential- 4

1. Characteristics

1.1 General

 Report Version 1.0

Date 29.04.19

Test Environment Production / test

Test Type Grey Box

Test Period March - April 2019

RE-Test Date -

System Components Type URL

Web Application https://system.connecare.eu/sacm
Android pro-connecare.mobile.apk

Vendor -

Project team Name Title

Natalie Menachem

Liran Segal

Daniel Rabinowitz

Projects Operation Team Leader

Head of Offensive Security

Penetration Tester

Report Writer Daniel Rabinowitz

Test Limitation

https://system.connecare.eu/sacm

Votiro -Confidential- 5

1.2 System Details

 Description

Assuta’s Connecare system is a system for the Assuta hospital’s patients. The

system provides monitoring of biological measurements such as blood

pressure, remote support from Assuta nurses in the pre-operation program,

and Maccabi nurses for a period of three months after discharge, etc.

 Technology

 Nginx 1.14.0

 AngularJS 5.2.10

 Zone.js

 Lodash 4.17.10

 TinyMCE 4

 Screenshots

Votiro -Confidential- 6

2. Executive Summary

2.1 General
This Penetration test was conducted during March-April 2019 against Connecare

system, in order to ensure the system’s ability to withstand attacks and to increase

the protection of the data they contain.

Test Summary:

The system’s security risk level is High, during the test we found many issues with

the protection of sensitive information and things that could harm application users.

Below are a few examples of the weaknesses we found:

 The system does not prevent the uploading of files with malicious content /

extensions that are not defined as legitimate for upload by the system

definitions.

 The password reset mechanism is improperly implemented. When a

password reset request is sent, the system automatically resets the

password to a random password. In this way, any user’s password could be

reset without them knowing.

 The system does not contain mechanisms to prevent automated attacks, and

thus an attacker could send a large number of requests in order to cause a

server overload.

 System users can set “weak” passwords that are easy to guess, (e.g. numbers

in order).

 The system locks users’ accounts after a number of failed login attempts.

An intermediate or above level of technical knowledge is required to exploit most of

the vulnerabilities. You are advised to apply corrections and/or controls to

compensate for the findings. These can be seen in the list of recommended

rectifications for each finding. Below are a number of recommended solutions:

Votiro -Confidential- 7

 It is recommended to harden the file upload mechanism so that only

authorized file types can be uploaded.

 It is recommended to send an email to the user with a link that redirects the

user to a password reset form.

2.2 Findings Distribution

0

2

4
9

0

Findings Summary

Critical

High

Medium

Low

Informative

 -Confidential- 8

3. Findings Summary

Item Test Type Risk Level Component Topic General Explanation Status

4.1 Applicative High Application
Unrestricted File

Upload

The Unrestricted File Upload
vulnerability describes a situation

where the server does not adequately
restrict the type and content of files
uploaded to the server by users. An

attacker could exploit this weakness in
order to cause a Denial of Service or
even to gain control of the server.

Vulnerable

4.2 Applicative High Application
Insecurely
Designed

Component

The Insecurely Designed Component
vulnerability describes a situation

where a certain component is designed
or implemented in an improper way

which constitutes a security risk.

Vulnerable

4.3 Applicative Medium Application
Insufficient Anti-

Automation

Insufficient Anti-Automation
vulnerability allows an attacker to

create automated processes to map the
system’s accounts and passwords or to

cause a DoS (Denial of Service).

Vulnerable

 -Confidential- 9

Item Test Type Risk Level Component Topic General Explanation Status

4.4 Applicative Medium Application
Insecure

Password Policy

The Insecure Password Policy
vulnerability describes defects in the

system’s password policy that make it
possible to use weak passwords to log

into the system.

Vulnerable

4.5 Applicative Medium Application Accounts Lockout

The Account Lockout vulnerability
describes a situation where the system
locks users’ accounts after a number of
failed login attempts. A malicious entity
could exploit this mechanism in order

to lock system users’ accounts and
thereby cause a Denial of Service.

Vulnerable

4.6 Applicative Medium Application
Sensitive Data

Cached

The Sensitive Data Cached vulnerability
describes a scenario in which an
attacker with physical access to a

victim’s computer can steal sensitive
information (e.g.: usernames,

passwords).

Vulnerable

4.7 Applicative Low Application
Lack of Security

Headers

The Lack of Security Headers
vulnerability describes the absence of
the security headers that provide an
extra level of security by helping to

reduce attacks and security
vulnerabilities.

Vulnerable

 -Confidential- 10

Item Test Type Risk Level Component Topic General Explanation Status

4.8 Applicative Low Application
Insecure Cross-
Origin Resource

Sharing

The Insecure Cross-Origin Resource
Sharing vulnerability makes it possible
for an attacker to redirect site users’
requests through himself and thus to

steal sensitive information.

Vulnerable

4.9 Applicative Low Application
Improper Error

Handling

The Improper Error Handling
vulnerability describes a situation

where the server sends users detailed
error messages that contain

information about it.

Vulnerable

4.10 Applicative Low Application
Insecure Session

Policy

The Insecure Session Policy
vulnerability describes a situation
where the session management

mechanism is improperly implemented,
which constitutes a threat to system

users.

Vulnerable

4.11 Applicative Low Application
Sensitive

Accessible
Services

The Sensitive Accessible Services
vulnerability describes a situation

where there are open services on the
server that provide an attacker with
new attack vectors on those open

services and even make it possible to
expose sensitive information about the

system’s structure and users.

Vulnerable

 -Confidential- 11

Item Test Type Risk Level Component Topic General Explanation Status

4.12 Applicative Low Application
Not Obfuscated

Code

The Not Obfuscated Code vulnerability
makes it possible for an attacker to

examine the application’s code in order
to find weaknesses in the application.

Vulnerable

4.13 Applicative Low Application
 Undetected
Jailbreak or

Rooted Device

The Undetected Jailbreak or Rooted
Device vulnerability describes a

situation where it is possible to install
and use applications on a jailbroken

device, which increases the attacker’s
leeway.

Vulnerable

4.14 Applicative Low Application
Insecure Data

Storage

The Insecure Data Storage vulnerability
describes a situation where the

application stores sensitive information
locally on the device it is installed on..

Vulnerable

4.15 Applicative Low Application
Old Application

Version

The Old Application Version
vulnerability increases the vulnerability

to security risks. Security issues are
frequently discovered in old software

when the manufacturer’s

Vulnerable

 -Confidential- 12

Item Test Type Risk Level Component Topic General Explanation Status

4.16 Applicative Low Application
Information
Disclosure

Information Disclosure vulnerability
helps an attacker to perform more

effective attacks based on the system
information.

Vulnerable

 -Confidential- 13

4. Findings Details
Item 4.1
Test Type: Applicative
Topic: Unrestricted File Upload
Risk Level: High
Severity: High Exploitation Probability: High

Vulnerability Description

A file upload mechanism enables users to upload files to the server for future use. The

Unrestricted File Upload weakness describes a situation where the file upload mechanism

can be exploited by an attacker in the following attack scenarios:

Denial of Service (DoS) – when an attacker can upload files onto the server without limitations

on file size, content or the number of files that can be uploaded simultaneously, this can help

an attacker to use up all of the free storage memory on the server and even to overload the

server’s bandwidth, thereby causing a denial of service.

Server Takeover – when an attacker can upload files onto the server without limitation on

content (MIME Types, file name etc.), this can help the attacker to upload a malicious file

onto the server that will give him control over the server (e.g.: uploading a web shell file).

Vulnerability Details

During the test that was done, we found that the system does not prevent the uploading of

files with malicious content that have MIME Types that are not defined as legitimate for

upload by the system definition. After the file has been uploaded, the system changes that

file’s name to a random name and removes the file’s extension (e.g.: .exe, .pdf, .rar). The only

thing the system blocked was files with the extensions “.txt, .xlsx, .docx, .doc.”

In addition, we found that when a file with the .csv extension is uploaded, the system changes

the name and also adds the .xls extension.

As a result, we were able to upload files with various extensions (e.g. html, exe, csv, php,

aspx) that have malicious content (Mimikatz, Webshell, Formula Injection, Cross Site

Scripting). An attacker or any other malicious entity could upload files with malicious content,

which could help the attacker with future attacks.

 -Confidential- 14

Screenshots

The following screenshot shows a file with malicious content being uploaded to the server:

The following screenshot shows a file with malicious content that we downloaded from the

system server being opened:

 -Confidential- 15

The following screenshot shows the execution of a file after we downloaded it from the

system server and added an extension (.exe):

The following screenshot shows the execution of malicious JavaScript code after an HTML file

was uploaded to the system server:

 -Confidential- 16

Recommended Rectification

It is recommended to harden the file upload mechanism so that:

 The files are stored in a dedicated library and not under the web library in which the

site files are stored. A user must not be able to choose the library independently.

 Do not rely on file extensions. Check the Mime type that appears in the files’ headers

to ensure that the files arrive in the proper format. (This test should be done with the

white list method).

 Limit the size of the files that can be uploaded to the system (e.g.: a maximum file size

of 15 MB).

 Check the type of file according to its content and magic number identity.

 Store the files with random names. For example, the file Research123.jpg should be

stored on the sever with the name sgbrys3f2504.jpg with the key 46811147 (the key

can be stored in a database in order to link the original filename to the stored

filename). This suggestion is intended to prevent malicious users from attempting to

upload malicious files onto the server and then locating them and trying to execute

them through the web server.

 Access to the file upload mechanism should only be enabled for authorised users and

only after authentication.

You can find additional information on this weakness and the ways to implement solutions

to rectify it in the following links:

http://www.acunetix.com/websitesecurity/upload-forms-threat.htm

https://www.owasp.org/index.php/Unrestricted_File_Upload

http://cwe.mitre.org/data/definitions/434.html

http://www.acunetix.com/websitesecurity/upload-forms-threat.htm
https://www.owasp.org/index.php/Unrestricted_File_Upload
http://cwe.mitre.org/data/definitions/434.html

 -Confidential- 17

Item 4.2
Test Type: Applicative
Topic: Insecure Design Component
Risk Level: High
Severity: High Exploitation Probability: High

Vulnerability Description

The Insecure Design Component vulnerability describes various situations in which a system

component is designed or implemented improperly in a significant way that puts the

application or system users at risk and could result in damage to the organization such as:

 System shutdown.

 Unauthorized actions being performed.

 Sensitive information leaking.

 The theft of login details and unauthorized control of user accounts.

The existence of this vulnerability makes it possible for an attacker to carry out a range of

attacks against the system that will enable him to perform malicious actions and harm the

organization or system users.

Vulnerability Details

During the test, we found that the password reset mechanism is improperly implemented,

and that when a password reset request is sent, the system automatically resets the

password to a random password. In this way, any user’s password could be reset without his

knowledge. The following steps are required to carry out this attack:

 Enter the system login page.

 Click on “Forgotten your password”.

 Enter the email address of the user whose password you want to reset.

An attacker or any other malicious entity could exploit this weakness in order to reset the

passwords of the users on the system.

 -Confidential- 18

Screenshots

The following screenshots show the password before and after sending the reset request:

 -Confidential- 19

Recommended Rectification

 It is recommended to send the user an email with a link that will redirect him to the

password reset form.

Additional information:

https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

 -Confidential- 20

Item 4.3
Test Type: Applicative
Topic: Insufficient Anti-Automation
Risk Level: Medium
Severity: Medium Exploitation Probability: Medium

Vulnerability Description

Insufficient Anti-Automation vulnerability occurs when a web form does not have an efficient

protection against automated requests and Brute-Force attacks. This vulnerability might

expose the system to two main attack vectors: The first one is a Denial of Service by

repeatedly requesting for resources from the server and the other vector is a Brute-Force

attack which is an attempt to discover passwords by systematically trying every possible

combination of letters, numbers and symbols until you discover the correct combination.

Vulnerability Details

During the test that was done, we found that the system does not contain a mechanism for

preventing automated attacks for the following forms:

 The password reset service: https://system.connecare.eu/sacm/login?returnUrl=%2F

 The system login page: https://system.connecare.eu/sacm

These are the steps that need to be taken in order to exploit the weakness in the login page:

 Enter the main page

 Catch the request using a proxy server (e.g.: Burp Suite).

 Define the “email” parameter that will change with each request according to the file

of email addresses that we have created in advance.

 Send multiple requests to the server.

As a result, an attacker or any other malicious entity could exploit this weakness to overload

the server by creating multiple requests through the login mechanism.

https://system.connecare.eu/sacm/login?returnUrl=%2F
https://system.connecare.eu/sacm

 -Confidential- 21

ScreenShot

The following screenshot shows the process of sending messages automatically:

Recommended solutions

 It is recommended to limit users to up to 5 requests in a period of time and after 5

requests, present them with a secure Captcha mechanism. Such a mechanism is

present on the main login screen in the new version of the system. Another example

of an effective, well-known mechanism is Google’s reCaptcha.

For additional information: https://www.google.com/recaptcha/intro/index.htm

 It is recommended to create and apply a bandwidth throttling mechanism on the

users who are logged into the system which does not allow any individual user to

create more than X sensitive requests within a period of time Y (for example, a

mechanism that does not allow a user to send more than 5 file upload requests within

a period of 5 minutes).

https://www.google.com/recaptcha/intro/index.htm

 -Confidential- 22

Item 4.4
Test Type: Applicative
Topic: Insecure Password Policy
Risk Level: Medium
Severity: Medium Exploitation Probability: Medium

Vulnerability Description

The Insecure Password Policy vulnerability describes a situation where there are faults in

the system’s password policy. As a result, system users can use passwords that are easy to

guess (e.g.: 12345678, qwerty, etc.) to log into their accounts. Using weak passwords puts

the system users at risk of unauthorized account penetration.

Vulnerability Details

During the test, we found that system users can set “weak” passwords that are easy to guess

(e.g. digits in numerical order). It will be easy to guess these passwords and gain complete

control over the system. An attacker who obtains the username can guess the user’s

password and gain access to his account.

ScreenShot

The following screenshot shows the system being logged into with a system user’s weak

password:

 -Confidential- 23

Recommended Rectification

It is recommended to harden the password policy on the system so that weak passwords that

do not meet the company’s set policy cannot be used:

 A correct, secure password policy can be set using the following recommendations:

 Password length of at least 10 characters

 The password must contain a combination of uppercase and lowercase letters,

numbers and special characters.

 The user’s password should not be valid for more than 3 months.

 The system should not allow reuse of passwords that have already been used in the

past.

 -Confidential- 24

Item 4.5
Test Type: Applicative
Topic: Account Lockout
Risk Level: Medium
Severity: Medium Exploitation Probability: Medium

Vulnerability Description

An Account Lockout occurs when an attacker can lock user accounts using a Brute Force

attack on the system login page, providing the username that he wants to lock and additional

incorrect login details. An attacker who exploits this vulnerability in the system could cause

a Denial of Service with respect to logging in.

Vulnerability Details

During the test that was done, we found that the system locks user accounts after a number

of incorrect login attempts. When entering the “system login” page, the user must enter

system login details, and if a user enters incorrect details, the user’s account will be locked

after 3 attempts. To lock a user out, the following steps need to be taken:

 Access the “system login” page

 Enter incorrect login details 3 times

 The user’s account is locked

An attacker could exploit this weakness in order to arbitrarily block system users from

accessing their accounts, ultimately leading to a denial of service.

 -Confidential- 25

ScreenShot

The following screenshot shows a system user’s account being locked after 3 incorrect login

attempts:

Recommended Rectification

 It is recommended not to block the accounts of system users.

 If there is a requirement to block user accounts, ensure that there is a time limit on

this blocking (around 20 minutes)

 It is recommended to limit users to up to 5 requests in a period of time, and after 5

requests, to present them with a secure Captcha mechanism. Such a mechanism is

present on the main login screen in the new version of the system. Another example

of an effective, well-known mechanism is Google’s reCaptcha.

For additional information: https://www.google.com/recaptcha/intro/index.html

 -Confidential- 26

Item 4.6
Test Type: Applicative
Topic: Sensitive Data Cached
Risk Level: Medium
Severity: Medium Exploitation Probability: Medium

Vulnerability Description

When activating the program, there are processes that could contain sensitive information

such as usernames, passwords, database connection certificates, etc. This vulnerability

exists when sensitive data about the servers / system users is stored without encryption in

the client’s cache memory (e.g. login passwords). This sensitive information could be read

by a malicious entity with physical access to the client’s computer.

Vulnerability Details

During the test, we found that when accessing the cache memory of the program’s processes,

one can see sensitive information such as: system users’ email addresses. As a result, an

attacker with physical access to a workstation could exploit this vulnerability in order to find

out system users’ email addresses.

In order to exploit this vulnerability, we took the following steps:

 Open the application manager and access the processes tab.

 Create a dump file for the process named “firefox.exe” (shown in the screenshots

below)

 Download the “Strings” program from Microsoft from the following link:

https://docs.microsoft.com/en-us/sysinternals/downloads/strings

 Convert the dump file we have created to a regular text file using the following

command:

 strings.exe firefox.DMP > dump.txt

 Open the resulting text file and search for keywords. In our case, we searched for

“@”.

https://docs.microsoft.com/en-us/sysinternals/downloads/strings

 -Confidential- 27

ScreenShot

The following screenshot shows sensitive information in the dump file:

Recommended Rectification

 It is recommended not to store sensitive information in the cache

 If possible, implement a mechanism such as JWT (the most recent version) or a

similar mechanism, which will encrypt the content that is sent between the client

and the server using a unique signature.

For more information:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control

 -Confidential- 28

Item 4.7
Test Type: Applicative
Topic: Lack of Security Headers
Risk Level: Low
Severity: Low Exploitation Probability: Low

Vulnerability Description

HTTP headers are only fields, encoded in plain text, that constitute part of HTTP requests and

response headers. They are designed to provide information about the connection that has

been established, the requested resource, as well as the returned resource itself. HTTP

security headers provide an additional layer of security by helping to reduce attacks and

security vulnerabilities. The following is a list of HTTP headers linked to security:

 X-Frame-Options improves the protection of Web applications against clickjacking

attacks. It makes a declaration about the policy that is transmitted from the host to

the client browser about whether the browser should display the transported content

in frames on other websites.

 X-XSS-Protection – this mechanism enforces the use of the XSS attack filtering which

is a default setting in modern browsers.

 X-Content-Type-Options prevents the browser from interpreting files as something

other than what is declared by the type of content in the HTTP headers.

 Content-Security-Policy – this is a security header that requires the careful

adjustment and precise definition of the policy. If this option is activated, CSP has a

significant influence on the way in which the browser processes pages (e.g. JavaScript

is dropped as a default option and must be explicitly allowed in the policy). CSP

prevents a wide range of attacks, including XSS and other injections on the site.

 X-Permitted-Cross-Domain-Policies – this is an XML document that gives a Web client,

such as Adobe Flash Player, permission to handle data on domains. When clients

request content stored in a certain source domain, and this content creates requests

directed to a domain that is not its own, the remote host needs to host an inter-

domain policy that gives access to the source domain, and enables the client to

 -Confidential- 29

continue the transaction. Generally the meta-policy is declared in the primary policy

file, but for those that cannot write to the root library, they can also be declared on

the meta-policy using the HTTP response header X-Permitted-Domain-Policies.

 Referrer-Policy – an HTTP heading that regulates which referrer information, sent in

the Referer heading, should be included with requests made.

Vulnerability Details

During the test, we found that the server does not include the following headers in its

responses:

 X-Frame-Options

 X-XSS-Protection

 X-Content-Type-Options

 Content-Security-Policy

 X-Permitted-Cross-Domain-Policies

 Referrer-Policy

The lack of these security headers could increase the risk and the likelihood of a range of

attacks being carried out through a variety of attack scenarios against system users. As a

result, an attacker could gain access to their accounts or to sensitive information on the

system.

Screenshot

The following screenshot shows the lack of security headers:

 -Confidential- 30

Recommended Rectification

 It is recommended to implement the relevant security headers in the server response.

For more information about security headers, see the following link:

https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#xpcdp

https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#xpcdp

 -Confidential- 31

Item 4.8
Test Type: Applicative
Topic: Insecure Cross-Origin Resource Sharing
Risk Level: Low
Severity: Low Exploitation Probability: Low

Vulnerability Description

Cross-Origin Resource Sharing is a mechanism responsible for informing a user’s browser

which domains should be allowed access to resources on the domain we are browsing, that

is, from which domains (that have redirected the user) it can receive requests.

When the header Access-Control-Allow-Origin (a mechanism responsible for sharing the

server’s resources) is set to * (wildcard), a loophole is created which effectively lets any

domain access resources on the server.

Vulnerability Details

During the test, we found that the header Access-Control-Allow-Origin contains the value *

(wildcard), and as a result, the server makes the following scenario possible (for example):

1. An attacker sends an email to one of the site’s users with the address of his malicious

site – the link itself looks innocent, but in fact, when it is accessed, the attacker causes

the user to send a request to the system server.

2. Behind the scenes, the attacker has ensured that after the client sends his requests

to the system server, his browser sends the attacker the details that were sent in the

request.

The steps above will result in every item of data that is sent in a POST request between the

client and server actually passing through the attacker’s server. As a result, the attacker will

uncover all of the sensitive data sent in the requests, e.g. personal information.

 -Confidential- 32

ScreenShot

The following screenshot shows the modified request and the server response which includes

Access-Control-Allow-Origin:

Recommended Rectification

 It is recommended to advised not to enable the transfer of login details in the header

Access-Control-Allow-Credentials: https://www.html5rocks.com/en/tutorials/cors/

 It is recommended to define only authorized domains in the Access-Control-Allow-

Origin header.

For additional information, see the following link:

https://www.geekboy.ninja/blog/exploiting-misconfigured-cors-cross-origin-resource-

sharing/

https://www.html5rocks.com/en/tutorials/cors/
https://www.geekboy.ninja/blog/exploiting-misconfigured-cors-cross-origin-resource-sharing/
https://www.geekboy.ninja/blog/exploiting-misconfigured-cors-cross-origin-resource-sharing/

 -Confidential- 33

Item 4.9

Test Type: Applicative
Topic: Improper Error Handling
Risk Level: Low
Severity: Low Exploitation Probability: Low

Vulnerability Description

The Improper Error Handling vulnerability describes a situation where detailed error

messages enable an attacker to gather information and learn about the system and its

components.

An attacker could use the information on the system’s technology that he has gathered in

order to plan an attacker on the server.

Vulnerability Details

During the test, we found that the server returns a system error which includes information

about the server’s technologies when the request is changed to methods that are not enabled

on the server side. For example, when we change the way the request is sent from the GET

method to a DEBUG request, the server returns error messages that expose information

about the system server’s technologies. An attacker or any other malicious entity could

exploit this weakness in order to gain information about the server’s technologies and to

focus his attack by searching online for the known vulnerabilities of the server version.

Screenshot

The following screenshot shows the error message returned by the server that contains

technical information about it:

 -Confidential- 34

Recommended Rectification

 It is recommended, when the system creates error messages, do not display

detailed error messages to system users, and instead document these error

messages in a dedicated internal error log.

 It is recommended to redirect system users to a generic error page which does not

reveal details about the system.

 -Confidential- 35

Item 4.10
Test Type: Applicative
Topic: Session Policy Insecure
Risk Level: Low
Severity: Low Exploitation Probability: Low

Vulnerability Description

The Insecure Session Policy vulnerability describes a situation where the session

management mechanism is improperly implemented and conceals security risks that could

enable an attacker to gain control over system users’ accounts.

Below are a number of examples of security flaws that could be found in the session

management mechanism:

 The lifespan of the session ID, which determines the time after which an inactive

session is destroyed on the server side, is not set, or is set to an extremely long time.

 The session ID is not random and/or is easy to guess.

 The session ID does not change and remains fixed with each new login.

These flaws could enable an attacker to discover system users’ session IDs and use them to

take control of their accounts, to take actions on their behalf and to view information he is

not authorized to see.

Vulnerability Details

During the test, we found that the application does not implement a Session Timeout

mechanism. In the test, we found that it is possible to log in a number of times

simultaneously, without receiving any indication that there are a number of logins for a

specific user. The failure to use a Session Timeout could lead to a situation where a client has

no indication from the system that there has been another simultaneous login to his account.

As a result, an attacker or any other malicious entity could exploit this weakness to log into

users’ accounts without their knowledge if he manages to obtain account login details.

 -Confidential- 36

ScreenShot

The following screenshot shows the same account being logged into from three different

browsers:

Recommended Rectification

 It is recommended, when the application is logged into from a new source while there

is an active session, it is advisable to allocate a new session ID to the new login source

and destroy the previous session on the server side.

 It is recommended to show users the last web address from which their accounts

were logged into.

 -Confidential- 37

Item 4.11
Test Type: Applicative
Topic: Sensitive Accessible Services
Risk Level: Low
Severity: Medium Exploitation Probability: Low

Vulnerability Description

The Sensitive Accessible Services vulnerability describes a situation where the system server

exposes open ports. This information could help an attacker to learn about the system server

and the software installed on the system server in order to carry out future attacks.

Vulnerability Details

During the test, we found that the system server exposes details about itself and the services

running on it. An attacker or any other malicious entity who uncovers this information could

use it to refine future attacks on the system.

ScreenShot

The following screenshot shows a survey of the ports and services that are running on the

system server:

 -Confidential- 38

Recommended Rectification

 It is recommended to block access to services that are not being used.

 It is recommended to limit access to sensitive services on the system to dedicated IP

addresses only, through Firewall Filtering.

 It is recommended to enable only secure connections to the server (TLS1.3) using the

HTTPS protocol, starting from the system login screen, avoid redirecting system users

through a protocol that is not encrypted (e.g. through the HTTP protocol).

 -Confidential- 39

Item 4.12
Test Type: Applicative
Topic: Not Obfuscated Code
Risk Level: Low
Severity: Low Exploitation Probability: Low

Vulnerability Description

The Not Obfuscated Code vulnerability describes a situation where an attacker who comes

into contact with the application’s code could search it for security vulnerabilities such as:

Buffer Overflow, Hard-Coded Credentials, and other vulnerabilities that could endanger

application users.

Vulnerability Details

During the test, we found that the application’s source code is not obfuscated. An attacker

could locate the application’s apk file, analyze it (during the test we used “JD-GUI” to view

the code) and gain a better understanding of the application’s structure, map out its

interfaces, locate potential vulnerabilities, and search for sensitive parameters in the code.

Screenshot

Below is a screenshot showing part of the application’s code:

 -Confidential- 40

Recommended Rectification

 Obfuscate the application’s source code (you can use third party software such as

ProGuard). For additional information, see the following link:

https://riis.com/blog/android-obfuscation

https://www.guardsquare.com/en/proguard
https://riis.com/blog/android-obfuscation

 -Confidential- 41

Item 4.13
Test Type: Applicative
Topic: Not Obfuscated Code
Risk Level: Low
Severity: Low Exploitation Probability: Low

Vulnerability Description

The Undetected Jailbreak or Rooted Device vulnerability refers to the lack of a mechanism

for identifying and alerting users when an attempt is made to access the application from a

device with root privileges. Using the application from such a device increases the risk of

sensitive information leaking, because the process running on the device can access any part

of the application using root privileges.

Vulnerability Details

During the test, we found that the application can be activated on a device with root

privileges without any indication to the user. If the device is rooted (jailbroken), there are

ways to get around the operating system’s security mechanisms. As a result, an attacker with

physical access to the device could access any information stored on it. Furthermore, in such

a situation, malicious applications can perform read/write operations on the private

information of other applications on the same device and violate the sandbox principle.

Screenshot

The following screenshot shows the application being run on a device that has strong (root)

privileges:

 -Confidential- 42

Recommended Rectification

 It is recommended, when the application is activated, display a warning message to

the user explaining the possible risks. Consider a use in SafetyNet Attestation API to

implement protection.

https://developer.android.com/training/safetynet/attestation.html

 -Confidential- 43

Item 4.14
Test Type: Applicative
Topic: Undetected Jailbreak or Rooted Device
Risk Level: Low
Severity: Low Exploitation Probability: Low

Vulnerability Description

The Insecure Data Storage vulnerability occurs when the application’s keys assume that users

will not have access to the storage systems of the devices the application is installed on, and

therefore store sensitive information on them. This information could contain usernames,

passwords, cookie details, geographical information, etc. By rooting, it is possible to connect

the Android device to a computer / to connect through SSH and view that information using

dedicated software that is available across the internet.

Vulnerability Details

During the test, we found that the application stores sensitive information (e.g.:

RefreshAccessTokenKey, PushNotificationTokenKey, AccessKey) locally on users’ devices.

The following location exposes sensitive information:

 /data/data/connecare.mobile/shared_prefs/connecare.mobile_preferences.xml

As a result, an attacker with physical access to a device could access sensitive information

and perform operations on the user’s behalf without his knowledge.

 -Confidential- 44

Screenshot

The following screenshot shows sensitive information stored on a device:

Recommended Rectification

 In case of a commercial need to store the information, it is recommended to encrypt

it (for information stored in local storage, you can use the android device

administration API and set the encryption using “setStorageEncryption”).

 It is recommended using encryption before entering the information into the

keychain in order to prevent an attacker from viewing sensitive information.

 -Confidential- 45

Item 4.15
Test Type: Applicative
Topic: Old Application Version
Risk Level: Low
Severity: Low Exploitation Probability: Low

Vulnerability Description

The Old Application Version vulnerability increases the vulnerability to security risks. Security

issues are frequently found for old software when the support provided by the manufacturer

is no longer up-to-date.

Vulnerability Details

During the test conducted, we found that the server version Nginx 1.14.0 is not updated to

the latest version released by the manufacturer. The manufacturers usually release updates

when security breaches are discovered. Failing to update the system could weaken the level

of system security and make it easier for potential attackers to find vulnerabilities in the

system.

The following is a link to the known vulnerabilities of the system in version 1.14.0:

Nginx 1.4.0 Vulnerabilities.

Screenshot

The following screenshot shows the version of the Nginx server:

https://www.cvedetails.com/vulnerability-list/vendor_id-10048/product_id-17956/version_id-176493/Nginx-Nginx-1.4.0.html

 -Confidential- 46

Recommended Rectification

 It is recommended to ensure that there is an orderly process for updating the system

server, its components and all the technologies it uses, in order to prevent known

vulnerabilities from being used against the system and its users. For additional

information on the new versions, see the following link: https://nginx.org/

https://nginx.org/

 -Confidential- 47

Item 4.16
Test Type: Applicative
Topic: Information Disclosure
Risk Level: Low
Severity: Low Exploitation Probability: Low

Vulnerability Description
Information Disclosure vulnerability is a misconfiguration issue that allows users to view

information about technologies used by the application. This information mostly appears in

server responses, errors, or in broken functionality.

Response headers reveal the server’s type, version, and maybe other technologies in use,

which may help an attacker in finding vulnerabilities and plan his attack on the system.

Vulnerability Details

During the test, we found that the system server exposes information and details about itself

(and about the technologies the system uses) in the headers sent to users in server

responses.

The following is a list of all the headers that contain information about the server’s

technologies:

 X-Powered-By: Express

 Server: Nginx 1.4.0

A malicious entity who discovers information about the system details (and the technologies

implemented in the system) could exploit this when planning a future attack on the system

server by using known weaknesses that can be found across the internet.

 -Confidential- 48

Screenshot

The following screenshot shows the headers returned in the server’s response that contain

information about it:

Recommended Rectification

 It is recommended not to reveal sensitive information about the system and the

server’s components. Hide all the versions in order to make it harder to identify the

components of the system server. Remove the response headers: “X-Powered-By”

and “Server” from the responses returned by the server.

